• Title/Summary/Keyword: Foundation soil

Search Result 1,113, Processing Time 0.023 seconds

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil (사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Kwak, Yeon Min;Park, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2013
  • To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.

Dynamic Responses of a Whole Bridge System under Earthquakes including the Effect of Foundation nearby Soil-layers (기초부 주변토체의 영향을 포함한 지진하중을 받는 교량의 통합된 동적거동분석)

  • Mha, Ho-Seong;Park, lnn-Joon;Park, Byung Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • In this study, a new procedure (Unified Dynamic Analysis Method) to evaluate the dynamic responses a bridge under earthquakes is proposed, which is not only considering the bridge motions but also the soil layer motions nearby the bridge footing in order to include the soil-structure interactions. lt is found that the dynamic responses of the whole bridge systems can be properly evaluate from using the proposed UDAM. The properties of the soil layers where the bridge is located can be included into the seismic analysis, and the multi-seismic excitations can also be considered easily.

  • PDF

Site-response effects on RC buildings isolated by triple concave friction pendulum bearings

  • Ates, Sevket;Yurdakul, Muhammet
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.693-715
    • /
    • 2011
  • The main object of this study is to evaluate the seismic response effects on a reinforced concrete building isolated by triple concave friction pendulum (TCFP) bearings. The site-response effects arise from the difference in the local soil conditions at the support points of the buildings. The local soil conditions are, therefore, considered as soft, medium and firm; separately. The results on the responses of the isolated building are compared with those of the non-isolated. The building model used in the time history analysis, which is a two-dimensional and eight-storey reinforced concrete building with and without the seismic isolation bearings and/or the local soil conditions, is composed of two-dimensional moment resisting frames for superstructure and of plane elements featuring plane-stress for substructure. The TCFP bearings for isolating the building are modelled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. In order to investigate the efficiency of both the seismic isolation bearings and the site-response effects on the buildings, the time history analyses are elaborately conducted. It is noted that the site-response effects are important for the isolated building constructed on soft, medium or firm type local foundation soil. The results of the analysis demonstrate that the site-response has significant effects on the response values of the structure-seismic isolation-foundation soil system.

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.

The Behavior of Bearing Capacity of Steel Pipe Piles Reinforced by Super Injection Grouting at Pile Tip (S.I.G 공법으로 선단보강된 강관말뚝의 지지거동)

  • Park, Young-Ho;Kim, Nag-Young;Yook, Jeong-Hoon;Choi, Jin-O
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.20-27
    • /
    • 2004
  • Reinforced twice than width of foundation with SIC under steel piles drived in cohesion soil and in the coal-limestone which heavily fractured. To analyze behaviour characteristic of steel piles, load transfer test was performed to steel piles attached with strain gauges to axial direction. After it passed 49days, dynamic load test was performed to set-up effect of steel piles bearing capacity. The results of test were compared to each other. According to the results, as the skin friction of steel pile was on the same condition, end bearing capacity of steel piles established on SIC solid of cemented milk in cohesion soil was three times than steel piles established on SIG solid of cemented milk in heavily fractured coal- limestone. After piles were driven and passes 49days, in case of piles on SIG solid of comented milk in cohesion soil the increaes of allowable bearing capacity was 442.9% and allowable bearing capacity of piles on SIG solid of cemented milk in heavily fractured coal-limestone increased 22.4%.

  • PDF

Consolidation settlement of soil foundations containing organic matters subjected to embankment load

  • Feng, Ruiling;Wang, Liyang;Wei, Kang;Zhao, Jiacheng
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 2021
  • Peatland is distributed in China widely, and organic matters in soil frequently induce problems in the construction and maintenance of highway engineering due to the high permeability and compressibility. In this paper, a selected site of Dali-Lijiang expressway was surveyed in China. A numerical model was built to predict the settlement of the foundation of the selected section employing the soft soil creep (SSC) model in PLAXIS 8.2. The model was subsequently verified by the result of field observance. Consequently, the parameters of 17 types of soils from different regions in China with organic contents varying from 1.1-74.9% were assigned to the numerical model to study the settlement characteristics. The calculated results showed that the duration of primary consolidation and proportion of primary settlement in the total settlement decreased with increasing organic content. Two empirical equations, for total consolidation settlement and secondary settlement, were proposed using multiple linear regression based on the calculated results from the numerical models. The analysis results of the significances of certain soil parameters demonstrated that the natural compression index, secondary compression index, cohesion and friction angle have significant linear relevance with both the total settlement and secondary settlement, while the initial coefficient of permeability exerts significant influence on the secondary settlement only.

Investigating the dynamic response of deep soil mixing and gravel drain columns in the liquefiable layer with different thickness

  • Gholi Asadzadeh Khoshemehr;Hadi Bahadori
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.665-681
    • /
    • 2023
  • Liquefaction is one of the most devastating geotechnical phenomena that severely damage vital structures and lifelines. Before constructing structures on problematic ground, it is necessary to improve the site and solve the geotechnical problem. Among ground improvement methods dealing with liquefaction, gravel drain (GD) columns and deep soil mixing (DSM) columns are popular. In this study, the results of a series of seismic experiments in a 1g environment on a structure located over liquefiable ground with different thicknesses reinforced with GD and DSM techniques were presented. The dynamic response of the reinforced ground system was investigated based on the parameters of subsidence rate, excess pore water pressure ratio, and maximum acceleration. The time history of the input acceleration was applied harmonically with an acceleration range of 0.2g and at frequencies of 1, 2, and 3 Hz. The results show that the thickness of the liquefiable layer and the frequency of the input motion have a significant impact on the effectiveness of the improvement method and all responses. Among the two techniques used, DSM in thick liquefied layers was much more efficient than GD in controlling the subsidence and rupture of the soil under the foundation. Maximum settlement values, settlement rate, and foundation rotation in the thicker liquefied layer at the 1-Hz input frequency were higher than at other frequencies. At low thicknesses, the dynamic behavior of the GD was closer to that of the DSM.

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.