DOI QR코드

DOI QR Code

Investigating the dynamic response of deep soil mixing and gravel drain columns in the liquefiable layer with different thickness

  • Received : 2022.02.20
  • Accepted : 2022.08.16
  • Published : 2023.09.25

Abstract

Liquefaction is one of the most devastating geotechnical phenomena that severely damage vital structures and lifelines. Before constructing structures on problematic ground, it is necessary to improve the site and solve the geotechnical problem. Among ground improvement methods dealing with liquefaction, gravel drain (GD) columns and deep soil mixing (DSM) columns are popular. In this study, the results of a series of seismic experiments in a 1g environment on a structure located over liquefiable ground with different thicknesses reinforced with GD and DSM techniques were presented. The dynamic response of the reinforced ground system was investigated based on the parameters of subsidence rate, excess pore water pressure ratio, and maximum acceleration. The time history of the input acceleration was applied harmonically with an acceleration range of 0.2g and at frequencies of 1, 2, and 3 Hz. The results show that the thickness of the liquefiable layer and the frequency of the input motion have a significant impact on the effectiveness of the improvement method and all responses. Among the two techniques used, DSM in thick liquefied layers was much more efficient than GD in controlling the subsidence and rupture of the soil under the foundation. Maximum settlement values, settlement rate, and foundation rotation in the thicker liquefied layer at the 1-Hz input frequency were higher than at other frequencies. At low thicknesses, the dynamic behavior of the GD was closer to that of the DSM.

Keywords

References

  1. Araei, A.A. and Towhata, I. (2014), "Impact and cyclic shaking on loose sand properties in laminar box using gap sensors", Soil Dyn. Earthq. Eng., 66, 401-414. https://doi.org/10.1016/j.soildyn.2014.08.004.
  2. Asgari, A., Oliaei, M. and Bagheri, M. (2013), "Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques", Soil Dyn. Earthq. Eng., 51, 77-96. https://doi.org/10.1016/j.soildyn.2013.04.006.
  3. Bahadori, H., Ghalandarzadeh, A. and Towhata, I. (2008), "Effect of non plastic silt on the anisotropic behavior of sand", Soils Found., 48(4), 531-545. https://doi.org/10.3208/sandf.48.531.
  4. Bahmanpour, A., Towhata, I., Sakr, M., Mahmoud, M., Yamamoto, Y. and Yamada, S. (2019), "The effect of underground columns on the mitigation of liquefaction in shaking table model experiments", Soil Dyn. Earthq. Eng., 116, 15-30. https://doi.org/10.1016/j.soildyn.2018.09.022.
  5. Bayati, H. and Bagheripour, M.H. (2019), "Shaking table study on liquefaction behaviour of different saturated sands reinforced by stone columns", Mar. Georesour. Geotec., 37(7), 801-815. https://doi.org/10.1080/1064119X.2018.1492051.
  6. Bertalot, D., Brennan, A. and Villalobos, F. (2013), "Influence of bearing pressure on liquefaction-induced settlement of shallow foundations", Geotechnique, 63(5), 391. https://doi.org/10.1680/geot.11.P.040.
  7. Bouassida, M. and Porbaha, A. (2004), "Ultimate bearing capacity of soft clays reinforced by a group of columns: Application to a deep mixing technique", Soils Found., 44(3), 91-101. https://doi.org/10.3208/sandf.44.3_91.
  8. Bray, J.D. and Dashti, S. (2014), "Liquefaction-Induced Building Movements", Bull. Earthq. Eng., 12(3), 1129-1156. https://doi.org/10.1007/s10518-014-9619-8.
  9. Brown, R.E. (1977), "Vibroflotation compaction of cohesionless soils", J. Geotech. Eng. Division., 103(12), 1437-1451. https://doi.org/10.1061/AJGEB6.0000538.
  10. Brennan, AJ. and Madabhushi, S.P.G. (2002), "Effectiveness of Vertical Drains in Mitigation of Liquefaction", Soil Dyn. Earthq. Eng.., 22(9-12), 1059-1065. https://doi.org/10.1016/S0267-7261(02)00131-8.
  11. Castro, J. (2017), "Groups of encased stone columns: Influence of column length and arrangement", Geotext. Geomembranes, 45(2), 68-80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
  12. DehqanKhalili, H., Ghalandarzadeh, A., Moradi, M. and Karimzadeh, R. (2020), "Effect of distribution patterns of DSM columns on the efficiency of liquefaction mitigation", Scientia Iranica., 27(5), 2198-2208. https://doi.org/10.24200/sci.2019.21647.
  13. Esmaeili, M., Gharouni-Nik, M. and Khajehei, H. (2014), "Evaluation of deep soil mixing efficiency in stabilizing loose sandy soils using laboratory tests", Geotech. Test. J., 37(5), 817-827. https://doi.org/10.1520/GTJ20130099.
  14. Farahmand, K., Lashkari, A. and Ghalandarzadeh, A. (2016), "Firoozkuh sand: introduction of a benchmark for geomechanical studies", Iranian J. Sci. Technol. T. Civil Eng., 40(2), 133-148. https://doi.org/10.1007/s40996-016-0009-0.
  15. Fattah, M.Y., Al-Neami, M.A. and Al-Suhaily, A.S. (2017), "Estimation of bearing capacity of floating group of stone columns", Eng. Sci. Technol. Int. J., 20(3), 1166-1172. https://doi.org/10.1016/j.jestch.2017.03.005.
  16. Green, R.A., Olgun, C.G. and Wissmann, K.J. (2008), "Shear stress redistribution as a mechanism to mitigate the risk of liquefaction", In Geotech. Earthq. Eng. Soil Dyn.., IV, 1-10. https://doi.org/10.1061/40975(318)115.
  17. Hasheminezhad, A. and Bahadori, H. (2019), "Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns", Comput. Geotech., 110, 251-273. https://doi.org/10.1016/j.compgeo.2019.02.019.
  18. Hasheminezhad, A. and Bahadori, H. (2020), "On the deep soil mixing method in the mitigation of liquefaction-induced bearing capacity degradation of shallow foundations", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1755460.
  19. Iai, S. and Koizumi, K. (1986), "Estimation of earthquake induced excess pore water pressure for gravel drains", Proceedings of the 7th Japan Earthquake Engineering Symposium., 679-684. https://doi.org/10.2208/jscej.1996.535_155.
  20. Iai, S. (1989), "Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105
  21. Kayabasi, A. and Gokceoglu, C. (2018), "Liquefaction potential assessment of a region using different techniques (Tepebasi, Eskisehir, Turkey)", Eng. Geol., 246, 139-161. https://doi.org/10.1016/j.enggeo.2018.09.029.
  22. Kitazume, M. (1996), "JGS TC Report: Japanese design procedures and recent activities of DMM", 925-937.
  23. Kitazume, M., Yamazaki, H. and Tsuchida, T. (2000), "Recent soil admixture stabilization techniques for port and harbor constructions in Japan-deep mixing method, premix method, light-weight method", 23-40.
  24. Kramer, S.L. (1996), Geotechnical earthquake engineering (Pearson Education India).
  25. Lee, C.J., Wei, Y.C. and Kuo, Y.C. (2012), "Boundary effects of a laminar container in centrifuge shaking table tests", Soil Dyn. Earthq. Eng., 34(1), 37-51. https://doi.org/10.1016/j.soildyn.2011.10.011.
  26. Liu, L. and Dobry, R. (1997), "Seismic response of shallow foundation on liquefiable sand", J. Geotech. Geoenviron. Eng., 123(6), 557-567. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(557).
  27. Lou, M., Wang, H., Chen, X. and Zhai, Y. (2011), "Structure-soil-structure interaction: Literature review", Soil Dyn. Earthq. Eng., 31(12), 1724-1731. https://doi.org/10.1016/j.soildyn.2011.07.008.
  28. Miyajima, M., Setiawan, H., Serikawa, Y. and Yoshida, M. (2019), "Liquefaction-induced damage in recent earthquakes and new countermeasures against liquefaction", In IACGE 2018: Geotechnical and Seismic Research and Practices for Sustainability., 557-565, American Society of Civil Engineers Reston, VA.
  29. Namikawa, T., Koseki, J. and Suzuki, Y. (2007), "Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation", Soils Found., 47(3), 559-576. https://doi.org/10.3208/sandf.47.559.
  30. Orense, R., Morimoto, I., Yamamoto, Y.A., Yumiyama, T., Yamamoto, H. and Sugawara, K. (2003), "Study on wall-type gravel drains as liquefaction countermeasure for underground structures", Soil Dyn. Earthq. Eng., 23(1), 19-39. https://doi.org/10.1016/S0267-7261(02)00152-5.
  31. Ozden, S., Akpinar, E., Erdogan, H. and Atalay, HM. (2014), "Performance of precast concrete structures in October 2011 Van earthquake, Turkey", Mag. Concrete Res., 66(11), 543-552. https://doi.org/10.1680/macr.13.00097.
  32. Porbaha, A., Zen, K. and Kobayashi, M. (1999), "Deep mixing technology for liquefaction mitigation", J. Infrastruct. Syst., 5(1), 21-34. https://doi.org/10.1061/(ASCE)1076-0342(1999)5:1(21).
  33. Prasad, S., Towhata, I., Chandradhara, G. and Nanjundaswamy, P. (2004), "Shaking table tests in earthquake geotechnical engineering", Current Sci., 87(10), 1398-1404. https://www.jstor.org/stable/24109480. 109480
  34. Rayamajhi, D., Nguyen, T.V., Ashford, S.A., Boulanger, R.W., Lu, J., Elgamal, A. and Shao, L. (2014), "Numerical study of shear stress distribution for discrete columns in liquefiable soils", J. Geotech. Geoenviron. Eng., 140(3), 04013034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000970.
  35. Rayhani, M.H. and El Naggar, M.H. (2008), "Seismic response of sands in centrifuge tests", Can. Geotech. J., 45(4), 470-483. https://doi.org/10.1139/T07-097.
  36. Sadrekarimi, A. and Ghalandarzadeh, A. (2005), "Evaluation of gravel drains and compacted sand piles in mitigating liquefaction", Proceedings of the Institution of Civil Engineers-Ground Improvement., 9(3), 91-104. https://doi.org/10.1680/grim.2005.9.3.91.
  37. Seed, H.B. and Booker, J.R. (1977), "Stabilization of potentially liquefiable sand deposits using gravel drains", J. Geotech. Eng. Division., 103(7), 757-768. https://doi.org/10.1061/AJGEB6.0000453.
  38. Shahraki, M., Rafiee-Dehkharghani, R. and Behnia, K. (2018), "Three-dimensional Finite Element modeling of stone column-improved soft saturated ground", Civil Eng. Infrastruct. J., 51(2), 389-403. https://doi.org/10.7508/ceij.2018.02.009.
  39. Siddharthan, R.V. and Porbaha, A. (2008a), "Seismic response evaluation of sites improved by deep mixing, Part 2: Verification", Proceedings of the Institution of Civil Engineers-Ground Improvement., 161(3), 163-169. https://doi.org/10.1680/grim.2008.161.3.153.
  40. Siddharthan, R.V. and Porbaha, A. (2008b), "Seismic response evaluation of sites improved by deep mixing, Part I: Proposed approach", Proceedings of the Institution of Civil Engineers-Ground Improvement., 161(3), 153-162. https://doi.org/10.1680/grim.2008.161.3.163.
  41. Tang, L., Cong, S., Ling, X., Lu, J. and Elgamal, A. (2015), "Numerical study on ground improvement for liquefaction mitigation using stone columns encased with geosynthetics", Geotext. Geomembranes, 43(2), 190-195. https://doi.org/10.1016/j.geotexmem.2014.11.011.
  42. Tsukamoto, Y., Ishihara, K., Sawada, S. and Fujiwara, S. (2012), "Settlement of rigid circular foundations during seismic shaking in shaking table tests", Int. J. Geomech., 12(4), 462-470. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000153.
  43. Turan, A., Hinchberger, S.D. and El Naggar, H. (2009), "Design and commissioning of a laminar soil container for use on small shaking tables", Soil Dyn. Earthq. Eng., 29(2), 404-414. https://doi.org/10.1016/j.soildyn.2008.04.003.
  44. Yang, F.O., Fan, G., Wang, K., Yang, C., Lyu, W. and Zhang, J. (2021), "A large-scale shaking table model test for acceleration and deformation response of geosynthetic encased stone column composite ground", Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2021.05.013.
  45. Zeng, X. and Schofield, A.N. (1996), "Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling", Geotechnique., 46(1), 83-102. https://doi.org/10.1680/geot.1996.46.1.83.
  46. Zhou, H.Z., Zheng, G., Yu, X.X., Zhang, T.Q. and Liu, J.J. (2018), "Bearing capacity and failure mechanism of ground improved by deep mixed columns", J. Zhejiang Univ.-SCi. A, 19(4), 266-276. https://doi.org/10.1631/jzus.A1700517.