DOI QR코드

DOI QR Code

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil

사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석

  • Jang, Hwa Sup (Creative Technology Research Team, Korean Register of Shipping) ;
  • Kim, Ho Sun (New&Renewable Energy Research Team, Korean Register of Shipping) ;
  • Kwak, Yeon Min (New&Renewable Energy Research Team, Korean Register of Shipping) ;
  • Park, Jae Hyun (Geotechnical Engineering Research Division, Korea Institute of Construction Technology)
  • 장화섭 ((사)한국선급, 창조기술연구팀) ;
  • 김호선 ((사)한국선급, 신재생에너지연구팀) ;
  • 곽연민 ((사)한국선급, 신재생에너지연구팀) ;
  • 박재현 (한국건설기술연구원, Geo-인프라연구실)
  • Received : 2013.05.09
  • Accepted : 2013.07.30
  • Published : 2013.08.27

Abstract

To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.

수평하중이 지배적인 해상 풍력발전기 설계 시에는 지반-기초구조물 거동을 정확히 모사하여야 상부구조물에 대한 정확한 거동예측이 가능하며, 합리적 설계가 이루어질 수 있다. 현재 다양한 지반 모델링 기법이 존재하나, 모노파일 기초 설계 시, 각 해석 기법에 대한 충분한 검증 절차 없이 해석 결과를 그대로 사용할 경우 구조물을 과다 및 과소하게 설계할 우려가 있다. 이에 본 연구에서는 지반 모델링 기법 차에 따른 모노파일의 부재력 및 수평변위 차를 비교 분석하였다. 검토 결과 고정단 모델은 최대 수평변위를 과소평가 하여 사용성 검토 측면에서 적합하지 않은 것으로 나타났으며, 고정단 모델, 지반강성행렬 모델은 모노파일의 부재력을 과소평가하는 것으로 나타났다. 반면 가상고정점 모델은 모노파일의 부재력을 과대평가하여 경제성 측면에서 적합하지 않은 것으로 나타났다. 지반반력계수 모델과 p-y곡선 모델의 경우 3D 지반 모델링 해석 결과와 비교적 유사한 수평변위 및 부재력을 나타냈으며, 지반을 2D로 모델링한 경우 타 모델링 기법에 비해 과대한 수평변위와 부재력을 산정했다.

Keywords

References

  1. 지식경제부 (2010) 신재생에너지산업 발전전략. MKE (2010) Renewable energy industry development strategy, Korea (in Korean).
  2. Musial, W., Butterfield, S., and Ram, B. (2006) Energy from offshore wind, NREL, pp.2-11.
  3. 황병선, 이종훈, 유태승 (2011) 국내 해상풍력 추진 현황, 한국강구조학회지, 한국강구조학회, Vol. 23, No. 5, pp.7-11. Hwang, B.S., Lee, J.H., and Yoo, T.S. (2011) The Development Status of Offshore Wind Farm in Korea, Magazine of Korean Society of Steel Construction, KSSC, Vol. 23, No. 5, pp. 7-11 (in Korean).
  4. 이대용, 임성우 (2011) 해상풍력 Substurcture 기술개발 동향, 한국강구조학회지, 한국강구조학회, Vol. 23, No. 5, pp.12-16. Lee, D.Y. and Im, S.W. (2011) Special Issue] Technical Aspects for Development of Offshore Wind Power Substructure, Magazine of Korean Society of Steel Construction, KSSC, Vol. 23, No. 5, pp.7-11 (in Korean).
  5. 한국선급 (2011) 해상용 풍력발전 시스템의 기술 기준. KR (2011) Technical guidelines for offshore wind turbines, Korea (in Korean).
  6. AWS Truewind (2009) Offshore wind technology overview, NYSERDA PON 995, Task Order No. 2, Agreement No. 9998.
  7. 최창호, 이준용, 장영은 (2011) 해상 풍력터빈 Sub-sturcture 설계를 위한 지반공학적 고려사항, 한국강구조학회지, 한국강구조학회, Vol. 23, No. 5, pp.23-27. Choi, C.H., Lee, J.Y., and Jang, Y.E. (2011) Geotechnical Aspects for Designing Offshore Windturbine Substructure, Magazine of Korean Society of Steel Construction, KSSC, Vol. 23, No. 5, pp.23-27 (in Korean).
  8. Achmus, M., Kuo, Y-S., and Abdel-Rahman, K. (2009) Behavior of monopile foundation under cyclic lateral load, Computer and Geotechnics, Vol. 36, No. 5, pp.725-735. https://doi.org/10.1016/j.compgeo.2008.12.003
  9. 조재연, 이성준, 정상섬 (2010) 말뚝두부구속조건을 고려한 말뚝지지 전면기초의 최적단면 설계, 한국지반공학회논문집, 한국지반공학회, Vol. 26, No. 12, pp.31-40. Cho, J.Y., Lee, S.J., and Jeong, S.S. (2010), A Study on the optimum design of piled-raft foundation considering pile head condition, Journal of Korean Geotechnical Society, KGS, Vol. 26, No. 12, pp.31-40 (in Korean).
  10. Kuo, Y.S., Achmus, M., and Abdel-Rahman, K. (2012) Minimum embedded length of cyclic horizontally loaded monopile, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 138, No. 3, pp.357-363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602
  11. API (2002) Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design, American Petroleum Institute.
  12. ABDEL-RAHMAN, K. and ACHMUS, M. (2005) Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in germany, Proceedings of International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, London, Taylor & Francis, pp. 309-396.
  13. LI, Z., HAIGH, S.K., and BOLTON, M.D. (2010) Centrifuge modelling of mono-pile under cyclic lateral loads, Physical Modelling in Geotechnics, pp.965-970.
  14. Roesen, H.R., Andersen, L.V., Ibsen, L.B., and Foglia, A. (2012) Experimental setup for cyclic lateral loading of monopiles in sand, Department of Civil Engineering, Aalborg University, pp.857- 864, Denmark.
  15. 한국지반공학회 (2009) 구조물 기초 설계기준 해설. KGS (2009) Structure foundation design standards specification, Korean Geotechnical Society (in Korean).
  16. 대한토목학회 (2008) 도로교설계기준 해설. KSCE (2008) Bridge design standards specification, Korean Society of civil Engineers (in Korean).
  17. Jonkman, J., Butterfield, S., Musial, W., and Scott, G. (2009) Definition of a 5-MW reference wind turbine for offshore system development, NREL, Technical Report.
  18. ISO 19901-1 (2009) Petroleum and natural gas industries - Specific requirements for offshore structures - Part 1: Metocean design and operating considerations.
  19. 장화섭, 김호선, 음학진, 김만응 (2012) 5MW급 해상풍력발전기 모노파일 기초의 수직도 오차에 따른 거동 분석, 대한토목학회논문집, 대한토목학회, Vol. 32, No. 2.C, pp.61-68. Jang, H -S., Eum, H -J., Kim, H -S., and Kim, M -E. (2012) Behavior analysis by verticality error of monopile foundation for 5MW offshore wind turbine, Korean Society of Civil Engineers, KSCE, Vol. 32, No. 2.C, pp.61-68 (in Korean).
  20. 해운항만청 (1993) 항만시설물설계기준서. Maritime Transport & Port Office (1993) Harbor facilities design Standards (in Korean).
  21. 이용안, 정문경, 박재현, 이주형 (2011) 강관합성 현장타설말뚝 머리의 수평하중-변위 거동 분석, 한국지반공학회논문집, 한국지반공학회, Vol. 27, No. 12, pp.97-106. Lee, Y -A., Chung, M -K., Lee, J -H., and Park, J -H. (2011) Analysis of pile head lateral load-deflection behavior of steel-concrete composite drilled shafts, Korean Geotechnical Society, KGS, Vol. 27, No. 12, pp.97-106 (in Korean). https://doi.org/10.7843/kgs.2011.27.12.097
  22. Reese, L.C., Cox, W.R., and Koop, F.D. (1974) Analysis of laterally loaded piles in sand, Proceedings of Offshore Technology Conference, Houston, TX, Vol. II, Paper No. 2080, pp. 473-484.

Cited by

  1. Analysis of the Multi-layered Soil on Monopile Foundation of Offshore Wind Turbine vol.37, pp.6, 2013, https://doi.org/10.5394/KINPR.2013.37.6.655
  2. Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve vol.39, pp.5, 2015, https://doi.org/10.5394/KINPR.2015.39.5.385
  3. Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency vol.17, pp.4, 2016, https://doi.org/10.5762/KAIS.2016.17.4.734
  4. Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area vol.21, pp.1, 2013, https://doi.org/10.5000/eesk.2017.21.1.069
  5. 풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구 vol.33, pp.4, 2013, https://doi.org/10.7734/coseik.2020.33.4.245