• 제목/요약/키워드: Foundation model test

검색결과 400건 처리시간 0.027초

Differential settlements in foundations under embankment load: Theoretical model and experimental verification

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.283-303
    • /
    • 2015
  • To research and analyze the differential settlements of foundations specifically, site investigations of existing railways and metro were firstly carried out. Then, the centrifugal test was used to observe differential settlements in different position between foundations on the basis of investigation. The theoretical model was established according to the stress diffusion method and Fourier method to establish an analytical solution of embankment differential settlement between different foundations. Finally, theoretical values and experimental values were analyzed comparatively. The research results show that both in horizontal and vertical directions, evident differential settlement exists in a limited area on both sides of the vertical interface between different foundations. The foundation with larger elastic modulus can transfer more additional stress and cause relatively less settlement. Differential settlement value decreases as the distance to vertical interface decreases. In the vertical direction of foundation, mass differential settlement also exists on both sides of the vertical interface and foundation with larger elastic modulus can transfer more additional stress. With the increase of relative modulus of different foundations, foundation with lower elastic modulus has larger settlement. Meanwhile, differential settlement is more obvious. The main error sources in theoretical and experimental values include: (a) different load form; (b) foundation characteristics differences; (c) modulus conversion; (d) effect of soil internal friction.

원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구 (A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests)

  • 이처근;신방웅;허열;안상로
    • 한국지반공학회지:지반
    • /
    • 제10권2호
    • /
    • pp.109-120
    • /
    • 1994
  • 해안지역에서 토류구조물을 축조하는 동안에 직면하게 되는 문제점중의 하나는 연약점토지반의 안정화 대책이다. 본 연구는 성토제체 축조시 연약점토지반의 안정화를 위하여 시멘트 개량 말뚝으로 보강된 연약지반의 거동효과를 구명하고자 원심모형실험을 수행한 것으로 서로 다른 조건에 대해서 단계 하중하에서 시간에 따른 보강지반과 비보강지반의 침하와 융기거동을 고찰하였다. 실헙결과 지반의 수직침하감수 제방에 인접한 지표면의 융기감소는 개량말뚝의 강도, 점토의 함수비 그리고 특히 개량면적비에 크게 영향을 받는 것으로나타났다.

  • PDF

진동기반 자기회귀모델을 통한 항만케이슨 지반-구조 경계부의 손상 모니터링 (Damage Monitoring in Foundation-Structure Interface of Harbor Caisson Using Vibration-based Autoregressive Model)

  • 이소라;이소영;김정태;박우선
    • 한국해안·해양공학회논문집
    • /
    • 제23권1호
    • /
    • pp.18-25
    • /
    • 2011
  • 본 연구에서는 진동기반 자기회귀모델을 이용하여 항만케이슨의 지반-구조 경계부 손상모니터링을 수행하였다. 이를 위해, 첫째, 케이슨 구조물의 지반-구조 경계부 손상모니터링을 위한 기법으로써 진동기반 자기회귀모델을 선정하였다. 둘째, 케이슨의 유한요소해석을 통하여 지반-구조 경계부 모니터링을 위한 진동기반 자기회귀모델 기법을 수치적으로 검증하였다. 마지막으로, 모형케이슨의 진동실험을 통해 진동기반 자기회귀모델 기법의 케이슨 지반-구조 경계부 손상 모니터링의 적용성을 검증하였다.

팽이기초의 하중전달 메커니즘 (Stress delivery mechanism of Top Bases)

  • 정진혁;도준기;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.430-440
    • /
    • 2009
  • Top-Base Foundation(TBF) was developed in Japan as a factory made concrete product. It is actively used in 6,000 sites by the end of 1980s in Japan and applied for a domestic patent in 1985. It is a shallow foundation whose effectiveness is proven by many relevant researchers and engineers. TBF was introduced to Korea in 1991 and has been applied mainly to architectural structures to date. Currently, the effectiveness in bearing capacity and settlement of TBF is being underestimated for civil engineering structures. Characteristics of Top-Base Foundation studied in Japan and Korea is known as follows: (1) as concrete part and crushed stone behave together, they perform the function of rigid mat; (2) the conical part and pile part of TBF disperses load by interaction with the crushed stone; (3) by preventing lateral strain and differential settlement on lower ground, it improves bearing capacity and constrains settlement at the same time. In Korea, it is used mostly in clayey soft grounds. The formula of bearing capacity and settlement of TBF suggested in Japan give the values of the underestimated. bearing capacity while its settlement is overestimated in comparison with the values measured from the field loading test. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test.

  • PDF

고유진동수 기반 석션기초의 지반구속효과 분석 (Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement)

  • 유무성;이준신;이종화;서윤호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구 (3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading)

  • 진영지;김진만;최봉혁;이대영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF

송전용 철탑기초의 현장수평재하시험을 통한 연결형 말뚝기초의 거동 및 지지력특성 (The Behavior and Resistance of Connected-pile Foundations for Transmission Tower from In-situ Lateral Load Tests)

  • 경두현;이준환;백규호;김대홍;김대학
    • 한국지반공학회논문집
    • /
    • 제28권2호
    • /
    • pp.57-70
    • /
    • 2012
  • 연약지반에 시공되는 송전철탑의 경우 말뚝기초가 주로 사용되나, 부등침하로 인한 철탑구조물의 손상이 유발될 수 있으며, 이에 따라 미국과 일본에서는 4각의 기초를 연결보로 연결한 연결형 기초의 사용을 추천하고 있다. 본 연구에서는 송전철탑에 작용하는 하중조건과 연결보의 강성조건이 연결형 말뚝기초의 수평거동에 미치는 영향을 조사하기 위해서 1/8 규모의 축소모델을 이용한 연결형 말뚝기초의 수평재하시험을 수행하였다. 본 시험결과 연결형 기초는 말뚝기초에 비하여 지지력이 크고 부등변위등의 송전철탑의 안전성을 저해하는 요인에 저항하는 효율적인 기초 형식인 것으로 나타났으며, 특히 연결보의 상대강성에 따른 효과를 분석한 결과 연결보의 강성이 매트의 강성대비 25%에서 연결형 기초의 형식으로 사용의 효율성이 좋은 것으로 나타났다.

건물-지반 시스템에 관한 진동대실험 (1) : 반무한지반위의 구조물 (Shaking table test on soil-structure interaction system (1) : Superstructure with foundation on half-space soil)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.538-547
    • /
    • 2005
  • This paper presents the shaking table testing method, only using building specimen as an experimental part taking into account the dynamic soil-structure interaction based on the substructure method. The Parmelee's soil stiffness is used as an assumed soil model in here. The proposed methodologies are summarized as: (1) Acceleration feedback method is the one that the shaking table is driven by the motion, corresponding to the acceleration at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the acceleration formulation. (2) Velocity feedback method is the one that the shaking table is driven by the motion, corresponding to the velocity at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the velocity formulation. The applicability of the proposed methodologies to the shaking table test is investigated and experimentally verified in this paper.

  • PDF