• Title/Summary/Keyword: Forest site

Search Result 1,475, Processing Time 0.035 seconds

Influence of Forest Fire on Soil Microarthropod Fauna (산불이 토양 미소절지동물상에 미치는 영향)

  • Choi, Seong Sik
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1996
  • The effect of forest fire on soil microarthropod fauna was investigated in the Inhoo Park, located at Deokjin-gu, Chonju city, where fire burned about 2 hectares on April 5, 1994. Vegetation of the area was covered with mixed forest such as 20 to 30 year old black locust, alder, and pine gree, etc., and also rich in understory plants, dead leaves, twigs, etc. The soil samples were taken from burnt soil and near-by control site on April 10, June 6 and Oct. 22 in 1994, and June 26, 1995. Soil microarthropods were extracted using Tullgren apparatus for 72 hours. Soil microarthropods collected in this experiment were 8, 013 at control and 3, 805 at the burnt site making a total of 11, 818 from 5 classes. Therefore, appearance of microarthropods was reduced to 52.5% at burnt site. Dominant animal groups were Acari (45%) and collembola (46%). The reduced rate of soil animal density by fire damage was 52.5% of the total soil microarthropods accounting 36% in Acari and 70% in collembola. The reduction of soil animal density by fire was 65.3% by habitat destruction and 51.7% by diret shock from fire heat. In Collembola, 89% was reduced by habitat destruction. Oribatid mites collected at sample plots included 29 families, 47 genera and 58 species. Forty-two species at burnt site and 47 species at unburnt site were identified, of these 32 being common species at both sites. The density ratio of soil animals at the burnt sites and those at unburnt sites was 38.6% va 61.4% resulting in 37% reduction due to fire. The dominant species with more than 5% in relative density were Trichogalumna nipponica (7.3%) and Eremobelba japonica (5.8%) at unburnt site, shereas 5 species including Eohypochthonius crassisetiger (8.5%) at the burnt site. The number of these species were 32.1% of total number. MGP analysis based on the number of oribatid mites indicated GP type at both unburnt and burnt sites, revealing domination of the P group in oribatid mites.

  • PDF

Developing System and Site Level Framework of Management Effectiveness Evaluation for the Forest Genetic Resources Reserve in Korea (산림유전자원보호구역의 관리효과성 평가를 위한 시스템 및 현장 수준의 평가틀 개발)

  • Lee, Dong-Ho;Kang, Mihee;Kim, Seong-il
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.472-485
    • /
    • 2016
  • The main purpose of this research was to develop a multi-level evaluation framework for the management effectiveness of the Forest Genetic Resources Reserve (FGRR) at both the system level and the site level. The initial system level Management Effectiveness Evaluation (MEE) framework for FGRR was developed based on the MEE Framework designed by IUCN WCPA and MEE framework for Korean National Parks that was designed jointly by IUCN, the Korean Ministry of Environment, and the Korea National Park Service. Several indicators were added or modified considering characteristics of the FGRR. The final system level MEE frameworks consisted of 6 categories with total of 39 criteria and 42 indicators based on expert survey results. The initial site-level MEE framework was developed based on the site level MEE framework for Korean National Parks that was designed jointly by IUCN, the Korean Ministry of Environment, and the Korea National Park Service. The final site level MEE framework consisted of 6 categories with total of 16 criteria and 40 indicators based on both an expert survey and an intensive workshop with the officers in charge of managing the FGRR from the Korea Forest Service and local governments.

Analysis of the Forest Road Cut-slope Erosion Control and Rehabilitation Techniques using Gabion Systems with Vegetation Base Materials (임도비탈면에 시공한 식생기반재돌망태의 침식방지 및 녹화효과 분석)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Analysis of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows: the curved road cut-slope site where normal gabion system was established 5,840 $cm^3$; the control site 5,833 $cm^3$; the straight road cut-slope site where normal gabion system was established 5,621 $cm^3$; the curved road cut-slope site where the new gabion system was established 4,298 $cm^3$; and the straight road cut-slope site where the new gabion system 4,117 $cm^3$. Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 56(30~85)% and about 45(28~65)%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

A Case Study on the Factors of Obstacles to Growth of Planted Trees in the Gimcheon Jakjumgogae of Baekdudaegan Ecological Axis Restoration Site (김천 작점고개 백두대간 마루금 복원사업지 내 식재수목의 생육 장애 요인에 관한 연구)

  • Kim, Su-Jin;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.422-432
    • /
    • 2022
  • Soil and micro-climatic environmental monitoring was conducted to evaluate the factors causing tree growth impediments at the Baekdudaegan ecological axis restoration project site. As a result, it was found that the nutrient supply was insufficient in the restoration project site due to the lack of organic matter, total nitrogen and cation exchange capacity of the soil compared to the surrounding forest. After the completion of the restoration, the soil moisture in the autumn decreased more than 7 times faster than that of the surrounding forest, and it was evaluated that the soil moisture was significantly low due to the lack of silt and clay content. In the case of the restoration site, the annual potential evapotranspiration was analyzed to be 975mm, which is approximately two times higher than that of the surrounding forest. The soil moisture of the restoration site in the summer decreased rapidly during the daytime when the amount of insolation increased and this was found to be strongly influenced by the increase in potential evapotranspiration. In order to improve the above factors affecting the tree growth at the Baekdudaegan ecological axis restoration project site, it is necessary to induce the smooth supply of nutrients and water to plants by improving physical proprieties and cation exchange capacity, i.e., using litterfall, humus soil, soil conditioner and organic fertilizer. The results of this study are expected to serve as basic data for the design, construction, and management of ecological axis restoration projects in the future.

Predicting the Effect of Climate Change on Forest Biomass by Different Ecoprovinces and Forest Types in Korea (기후변화에 따른 생태권역별·임상별 산림 바이오매스 변화량 예측)

  • Shin, Jin Young;Won, Myoung Soo;Kim, Kyongha;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.119-129
    • /
    • 2013
  • This study was conducted to predict the changes in forest biomass in different ecoprovinces and forest types under climate change scenario based on cumulative data (i.e., digital forest site and climate maps, National Forest Inventory data) and various prediction models. The results from this study showed that predicted changes over time in biomass varied according to ecoprovince and forest type in Korea. A reduction in biomass was predicted for all forest types associated with the mountain, southeastern hilly, and southwestern hilly ecoprovinces. On the other hand, the biomass was predicted to increase for the coniferous forest and mixed-forest types in the central hilly ecoprovince. Furthermore, increases in biomass are predicted for all forest types, except coniferous forests, in the coastal ecoprovince. The results from this study provide a basis for developing technology to predict forest impacts due to climate change by predicting changes in forest biomass based on the estimation of site index.

Comparison of vegetation recovery according to the forest restoration technique using the satellite imagery: focus on the Goseong (1996) and East Coast (2000) forest fire

  • Yeongin Hwang;Hyeongkeun Kweon;Wonseok Kang;Joon-Woo Lee;Semyung Kwon;Yugyeong Jung;Jeonghyeon Bae;Kyeongcheol Lee;Yoonjin Sim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.513-525
    • /
    • 2023
  • This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.

Derivation and Application of Survival Functions for Unthinned Forest Plantation (미간벌(未間伐) 인공림(人工林)에서 잔존림목(殘存林木) 추정(推定) 함수(函數)의 유도(誘導)와 적용(適用))

  • Li, Fengri;Chung, Joosang;Kwon, Soonduk
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.320-326
    • /
    • 1999
  • In this study, 15 survival functions in integral and difference forms for forest plantation were derived based on assumptions for the number of surviving trees and the differential forms of the mortality rate model. Then, performance of the models was evaluated by fitting to remeasurement data of unthinned white pine(Pinus strobes) forest plantation. As a result, three equations associated with a power function of age, $t^{\beta}$, are somewhat more suitable for describing the effect of self-thinning over time. On the other hand, a general survival function for Japanese larch(Larix leptolepts) forest plantation was derived in order to exam the effect of site quality on self-thinning procedures. The results indicate that the $N_{min}$ is negatively correlated with site index and, even though the same initial stand density was assumed, the survival function curves differ in shapes associated with site index values.

  • PDF

Development of Estimated Equation for Mortality Rates by Forest Type in Korea (우리나라 침엽수 및 활엽수림의 고사율 추정식 개발)

  • Son, Yeong Mo;Jeon, Ju Hyeon;Lee, Sun Jeong;Yim, Jong Su;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.450-456
    • /
    • 2017
  • This study was conducted to develop estimated equation for mortality rates (volume of dead trees, %) on coniferous and broad-leaved forests, representative forest types of South Korea. There were 6 equation models applied for estimating mortality such as a exponential equation, a Hamilton equation and variables using were DBH, basal area, and site index. Raw data used for estimating mortality were $5^{th}$ and $6^{th}$ national forest inventory data, and mortality was calculated with the difference of stocks between lived trees and dead trees by each sample plots. The most applicable equation to describe mortality on coniferous forest and broad-leaved forest was indicated as $P=(1+e^{(a+b{\times}DBH+c{\times}BA+d{\times}no\_ha+e{\times}density)})^{-1}$ and their goodness of fit showed 34% and 51% respectively. Goodness of fit in both equations were not much high because there were various factors which affect the mortality such as topographic conditions, soil characteristic, climatic factors, site quality, and competition. Therefore, it is considered that explaining mortality in forest with only 2 or 3 variables like DBH, basal area used in this analysis could be very difficult facts. However, this study is certainly worth in that there is no useful information on mortality by each forest type throughout the country at the present, and we would make an effort to promote the fitness of estimated equation for mortality adding competition index, tree crown density etc.

Geographic information system-based identification of suitable cultivation sites for wood-cultivated ginseng

  • Beon, Mu Sup;Park, Jun Ho;Kang, Hag Mo;Cho, Sung Jong;Kim, Hyun
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.491-495
    • /
    • 2013
  • Wood-cultivated ginseng, including roots in its dried form, is produced in forest land without using artificial facilities such as light barriers. To identify suitable sites for the propagation of wood-cultivated ginseng, factor combination technique (FCT) and linear combination technique (LCT) were used with geographic information system and the results were superimposed onto an actual wood-cultivated ginseng plantation. The LCT more extensively searched for suitable sites of cultivation than that by the FCT; further, the LCT probed wide areas considering the predominance of precipitous mountains in Korea. In addition, the LCT showed the much higher degree of overlap with the actual cultivation sites; therefore, the LCT more comprehensively reflects the cultivator's intention for site selection. On the other hand, the inclusion of additional factors for the selection of suitable cultivation sites and experts' opinions may enhance the effectiveness and accuracy of the LCT for site application.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).