• Title/Summary/Keyword: Focusing grid

Search Result 87, Processing Time 0.027 seconds

Fluid Simulations in Academy Awarded Movies (아카데미상 영화에서 유체 시뮬레이션 기술)

  • Kim, Myung-Gyu;Oh, Seung-Taik;Choi, Byoung-Tae
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.3
    • /
    • pp.19-30
    • /
    • 2008
  • Fluid simulation for computer graphics is a field of generating the realistic movements of water, smoke, fire, explosion, sand and related phenomena to be used in motion pictures and video games. In this paper we review the fluid simulation technologies and present a trend analysis for the simulation methods used in the recent movies. First of all, for this purpose, the two methods that are most widely used for fluid simulation are explained as well as their technical issues. These two methods are classified into Eulerian grid-based and Lagrangian particle-based approaches. Next, focusing on the achievements of the scientists and engineers that the 2008 Sci-Tech Oscar Awards are given to, the features of their fluid simulation technologies are analyzed. Finally, we anticipate that there are and will be the needs for visualizing fluid interaction with rigid and soft bodies and topological change among solid, fluid and gas, creating digital creatures based on fluid simulation and presenting interaction between creature and fluid.

  • PDF

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

A Study on Spatial Application of Digital Modulation Patterns - Focusing on generating digital patterns - (디지털 패턴의 생성과 공간적용방법 연구 - 디지털패턴의 생성을 중심으로 -)

  • Park, Jeong-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.100-111
    • /
    • 2010
  • 'Pattern' is the term that is frequently used in the aspects of history, society, and science. It always appears in the remains or relics of the age of civilization when recording was started, and its evaluation and value differ by time. Patterns in the ancient civilization were symbolic, social, and spatially crucial. However, after the modernization, they were considered to be immoral and unnecessary, so the range of their significance came to reduce. Due to the development of science, ornament patterns lost the limitation of its range of use along with new interpretation of them. Especially with the advent of new scientific theories such as the evolution theory from the biological aspect, quantum mechanics, and super string theory, morphological possibilities more than the human scale perceived by men came to be discovered. Living organisms maintain their lives through patterns, structures, and processes in order to produce a system alive. Among them, patterns are the organization of relations determining the characteristics of the system. The present patterns may correspond to this meaning. The pattern in a space is the matter of how to relate the components after all. In a space, however, there are numerous components mingled with one another. If these tasks are conducted as analogue work, it will take a lot of time and effort. However, if digital media are utilized to perform the tasks like analysis, generation, or fabrication, it will produce a result with higher precision and efficiency. In this sense, parametric modeling is quite useful media. Opening morphological variation, it realizes more possibilities, connects conveniently the relations between complex components composing a space, and helps produce creative patterns.

Real 3-D Shape Restoration using Lookup Table (룩업 테이블을 이용한 물체의 3-D 형상복원)

  • Kim, Kuk-Se;Lee, Jeong-Gi;Song, Gi-Beom;Kim, Choong-Won;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1096-1101
    • /
    • 2004
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc.... But it's not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Secondly the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I figure out the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which doesn't require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.

Radiotherapy Technique of High Energy Electron (고에너지 전자선의 방사선 치료 기술)

  • SUH M.W.;PARK J.I.;CHOI H.S.;KIM W.Y.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1985
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefore, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed does, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under $3\%$ errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under $5\%$ errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatters; i.e., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

A Fundamental Study on Behavior Characteristics of the Geosynthetic Composite Reinforcement in the Weathered Granite Backfill Soils (화강풍화토 뒤채움흙 내부 토목섬유 복합보강재의 거동특성에 관한 기초연구)

  • 김홍택;김승욱;전한용;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.171-191
    • /
    • 1999
  • The final aim of this research is to systematize the reinforced-earth wall system using the geosynthetic composite reinforcement in the weathered granite backfill soils having relatively large amount of fines. As a staged endeavour to accomplish this purpose, laboratory pull-out tests and finite element modeling are carried out in the present study focusing on the analyses of friction characteristics associated with interaction behaviors of the geosynthetic composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects resulting from the geotextile.

  • PDF

Studies on Dose Distribution and Treatment Technique of High Energy Electron (고(高)에너지 전자선(電子線) 치료(治療)를 위(爲)한 선량분포(線量分布) 및 기술적(技術的) 문제(問題)의 연구(硏究))

  • Lee, D.H.;Chu, S.S.
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.6-22
    • /
    • 1978
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefor, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed doses, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under 3% errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under 5% errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatterers; ie., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

Standardization Roadmapping: Cases of ICT Systems Standards

  • Ho, Jae-Yun
    • STI Policy Review
    • /
    • v.5 no.1
    • /
    • pp.1-33
    • /
    • 2014
  • Despite a commonly held belief that standards obstruct innovation, recent research shows that they can actually play critical roles in supporting various activities of technological innovation. Thus, providing an innovation-friendly environment through standardization has been gaining much attention in recent years; however, there is as yet limited understanding, due to complex dynamics and high uncertainties associated with innovation, as well as a variety of different types and functions of standards with various stakeholders involved. The problem becomes even more challenging for standardization in highly complex systems, such as Information and Communication Technology (ICT) systems, where a large number of domains and components are involved, along with various types of stakeholders. In order to deal with such complexity and variations, a systematic approach of standardization roadmapping has been used in many technology-leading countries as a strategic policy tool for supporting effective management of standardization. Despite its wide adoption, the current understanding of standardization roadmapping is somewhat limited, leaving significant challenges for policymakers and standards organizations in terms of how to structure and manage roadmapping exercises, and how the government should get involved. In this regard, the current research explores existing standardization roadmaps in various contexts related to ICT systems (ICT in Korea, Smart Grid in the US, and electromobility in Germany), as there is a particular need for systematic development of strategies for such complex systems of ICT. Focusing on various aspects of standardization roadmapping exercises such as their structures, processes, and participants, their common features and key characteristics are identified. Comparing these roadmaps also reveal distinct differences between standardization roadmapping approaches adopted by different countries in different contexts. Based on lessons learnt from existing practices, the study finally provides insight for the Korean ICT standards community on the ways in which their standardization roadmapping approach can be improved to support anticipatory management of standardization activities more effectively. It is expected that the current research can not only provide increased understanding of standardization roadmaps, but also help policymakers and standards organizations to develop more effective strategies for supporting innovation through the systematic management of standardization.

A X-ray Tube Using Field Emitter Made by Multi-walled Carbon Nanotube Yarns

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Kwak, Seung-Im;Ju, Jin-Young;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.392-392
    • /
    • 2011
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission.$^{1,2}$ CNT yarns have demonstrated its potential as excellent field emitters.$^3$ Extensive simulations were carried out in designing a CNT yarn-based cathode assembly. The focal spot size dependence on the anode surface of the geometric parameters such as axial distance of the electrostatic focus lens from the cathode and the applied bias voltages at the cathode, grid mesh and electrostatic focus lens were studied. The detailed computer simulations using Opera 3D electromagnetic software$^4$ had revealed that a remarkable size of focal spot under a focusing lens triode type set-up design was achieved. The result of this optimization simulation would then be applied for the construction of the CNT yarn based micro-focus x-ray tube with its field emission characteristics evaluated.

  • PDF

A Simulation of Directional Irregular Waves at Chagui-Do Sea Area in Jeju Using the Boussinesq Wave Model (Boussinesq 모델을 이용한 제주 차귀도 해역의 다방향 불규칙파 시뮬레이션)

  • Ryu, Hwang-Jin;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won;Kim, Do-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.7-17
    • /
    • 2007
  • Based on the Boussinesq wave model, the wave distribution in the Chagui-Do sea area in Jeju was simulated by applying the directional irregular waves at an incident boundary. The time and spatial variations of monthly mean wave height and period were investigated, which aims to provide basic information on optimal sites for wave power generation. The grid size and time interval of the Boussinesq wave model were validated by examining wave distributions around a surface piercing wall, fixed at sea bottom with a constant slope. Except for the summer season, the significant wave height is dominated by wind waves and appears to be relatively high at the north sea of Chagui-Do, which is open to the ocean, while it is remarkably reduced at the rear sea of Chagui-Do because of its blocking effect on incident waves. In the summer, the significant wave height is higher at the south sea, and it is dominated by the swell waves, which is contributed by the strong south-west wind. The magnitude of significant wave height is the largest in the winter and the lowest in the spring. Annual average of the significant wave height is distinctively high at the west sea close to the Chagui-Do coast, due to a steep variation of water depth and corresponding wave focusing effect. The seasonal and spatial distribution of the wave period around Chagui-Do sea reveals very similar characteristics to the significant wave height. It is suggested that the west sea close to the Chagui-Do coast is the mast promising site for wave power generation.