• Title/Summary/Keyword: Fock Space

Search Result 23, Processing Time 0.019 seconds

ON A q-FOCK SPACE AND ITS UNITARY DECOMPOSITION

  • Ji, Un-Cig;Kim, Young-Yi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • A Fock representation of q-commutation relation is studied by constructing a q-Fock space as the space of the representation, the q-creation and q-annihilation operators (-1 < q < 1). In the case of 0 < q < 1, the q-Fock space is interpolated between the Boson Fock space and the full Fock space. Also, a unitary decomposition of the q-Fock space $(q\;{\neq}\;0)$ is studied.

THE FOCK-DIRICHLET SPACE AND THE FOCK-NEVANLINNA SPACE

  • Cho, Hong Rae;Park, Soohyun
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.643-647
    • /
    • 2022
  • Let F2 denote the space of entire functions f on ℂ that are square integrable with respect to the Gaussian measure $dG(z)={\frac{1}{\pi}}{e^{-{\mid}z{\mid}^2}}$, where dA(z) = dxdy is the ordinary area measure. The Fock-Dirichlet space $F^2_{\mathcal{D}}$ consists of all entire functions f with f' ∈ F2. We estimate Taylor coefficients of functions in the Fock-Dirichlet space. The Fock-Nevanlinna space $F^2_{\mathcal{N}}$ consists of entire functions that possesses just a bit more integrability than square integrability. In this note we prove that $F^2_{\mathcal{D}}=F^2_{\mathcal{N}}$.

KERNEL OPERATORS ON FOCK SPACE

  • Bahn, Chang-Soo;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.527-538
    • /
    • 1998
  • We study on kernel operators (Wick monomials) on symmetric Fock space. We give optimal conditions on kernels so that the corresponding kernel operators are densely defined linear operators on the Fock space. We try to formulate our results in the framework of white noise analysis as much as possible. The most of the results in this paper can be extended to anti-symmetric Fock space.

  • PDF

APPLICATIONS ON THE BESSEL-STRUVE-TYPE FOCK SPACE

  • Soltani, Fethi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.875-883
    • /
    • 2017
  • In this work, we establish Heisenberg-type uncertainty principle for the Bessel-Struve Fock space ${\mathbb{F}}_{\nu}$ associated to the Airy operator $L_{\nu}$. Next, we give an application of the theory of extremal function and reproducing kernel of Hilbert space, to establish the extremal function associated to a bounded linear operator $T:{\mathbb{F}}_{\nu}{\rightarrow}H$, where H be a Hilbert space. Furthermore, we come up with some results regarding the extremal functions, when T are difference operators.

LIPSCHITZ TYPE CHARACTERIZATION OF FOCK TYPE SPACES

  • Hong Rae, Cho;Jeong Min, Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1371-1385
    • /
    • 2022
  • For setting a general weight function on n dimensional complex space ℂn, we expand the classical Fock space. We define Fock type space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ of entire functions with a mixed norm, where 0 < p, q < ∞ and t ∈ ℝ and prove that the mixed norm of an entire function is equivalent to the mixed norm of its radial derivative on $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$. As a result of this application, the space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ is especially characterized by a Lipschitz type condition.

FOCK SPACE REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS AND GENERALIZED LASCOUX-LECLERC-THIBON ALGORITHM

  • Kang, Seok-Jin;Kwon, Jae-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1135-1202
    • /
    • 2008
  • We construct the Fock space representations of classical quantum affine algebras using combinatorics of Young walls. We also show that the crystal graphs of the Fock space representations can be realized as the crystal consisting of proper Young walls. Finally, we give a generalized version of Lascoux-Leclerc-Thibon algorithm for computing the global bases of the basic representations of classical quantum affine algebras.

A Class of Normaloid Weighted Composition Operators on the Fock Space over ℂ

  • Santhoshkumar, Chandrasekaran;Veluchamy, Thirumalaisamy
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.889-896
    • /
    • 2021
  • Let 𝜙 be an entire self map on ℂ and let 𝜓 be an entire function on ℂ. A weighted composition operator induced by 𝜙 with weight 𝜓 is given by C𝜓,𝜙. In this paper we investigate under what conditions the weighted composition operators C𝜓,𝜙 on the Fock space over ℂ induced by 𝜙 with weight of the form $k_c({\zeta})=e^{{\langle}{\zeta},c{\rangle}-{\frac{{\mid}c{\mid}^2}{2}}}$ is normaloid and essentially normaloid.

TOEPLITZ OPERATORS ON GENERALIZED FOCK SPACES

  • Cho, Hong Rae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.711-722
    • /
    • 2016
  • We study Toeplitz operators $T_{\nu}$ on generalized Fock spaces $F^2_{\phi}$ with a locally finite positive Borel measures ${\nu}$ as symbols. We characterize operator-theoretic properties (boundedness and compactness) of $T_{\nu}$ in terms of the Fock-Carleson measure and the Berezin transform ${\tilde{\nu}}$.

BERGMAN KERNEL ESTIMATES FOR GENERALIZED FOCK SPACES

  • Cho, Hong Rae;Park, Soohyun
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • We will prove size estimates of the Bergman kernel for the generalized Fock space ${\mathcal{F}}^2_{\varphi}$, where ${\varphi}$ belongs to the class $\mathcal{W} $. The main tool for the proof is to use the estimate on the canonical solution to the ${\bar{\partial}}$-equation. We use Delin's weighted $L^2$-estimate ([3], [6]) for it.