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FOCK SPACE REPRESENTATIONS OF QUANTUM AFFINE
ALGEBRAS AND GENERALIZED
LASCOUX-LECLERC-THIBON ALGORITHM

SEOK-JIN KANG® AND JAE-HooN Kwon'

ABSTRACT. We construct the Fock space representations of classical quan-
tum affine algebras using combinatorics of Young walls. We also show that
the crystal graphs of the Fock space representations can be realized as
the abstract crystal consisting of proper Young walls. Finally, we give a
generalized version of Lascoux-Leclerc-Thibon algorithm for computing
the global bases of the basic representations of classical quantum affine
algebras.

Introduction

The crystal basis theory developed by Kashiwara ([9, 10]) provides us with
a very powerful combinatorial method of studying the structure of integrable
modules over quantum groups. Let M be an integrable module over a quantum
group U,(g) in the category Oins and let Ay denote the subring of Q(g) consist-
ing of regular functions at ¢ = 0. A crystal basis of M is a pair (L, B), where L
is an Ag-lattice of M and B is a QFbasis of L/qL satisfying certain properties
involving Kashiwara operators. Thus a crystal basis can be understood as a
basis of M at ¢ = 0 and the set B is given a structure of colored oriented graph,
called the crystal graph, that reflects the combinatorial structure of M.

It is known that every Uy(g)-module M in the category O;n; is a direct sum of
irreducible highest weight modules with dominant integral highest weights and
that the crystal bases are preserved under this decomposition (see, for example,
[4, 10]). Hence it is a very natural problem to find a concrete realization of the
crystal graph B()) of an irreducible highest weight U, (g)-module V() with
dominant integral highest weight A.

Moreover, one can globalize the main idea of crystal basis theory. Let V()
be an irreducible highest weight U,(g)-module with dominant integral highest
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weight A, and let (L(A), B())) be the crystal basis of V/(\). Consider the Q-
algebra automorphism of U,(g) defined by

i=q¢", &=e, fi=f, ¢"=q" for ie,he PV
Then we get a Q-linear automorphism of V(A) given by
Pyy — Pvy for P e U,(g),

where vy denotes the highest weight vector of V/(\). In [10] and [16], Kashiwara
and Lusztig independently showed that there exists a unique global basis (or
canonical basis) G(A) = { G(b)|b € B(A) } of V(A) satisfying the properties:

G(b)=G(®), GOb)=b (modgL()) forallbe B()).

Therefore one naturally gets interested in the following problem: Given a re-
alization of the crystal graph B(A) of V(X), can we find an effective algorithm
for constructing the global basis G(\)?

In [7], Kang introduced the notion of Young walls as a new combinatorial
scheme for realizing the crystal bases for quantum affine algebras. The Young
walls consist of colored blocks with various shapes that are built on a given
ground-state wall, and they can be viewed as generalizations of colored Young
diagrams. More precisely, let U,(g) be a classical quantum affine algebra of
type AV (n 2 1), AL, (n>3), DY (n > 4), A8 (n > 1), D)) (n > 2)
and BYY (n > 3), and let A be a dominant integral weight of level 1. Then the
description of ground-state wall Yy, the rules and patterns for building Young
walls, and the action of Kashiwara operators are given explicitly in terms of
combinatorics of Young walls. In this way, the set Z(A) of proper Young walls
is given a structure of abstract crystal for the quantum affine algebra U, (g), and
the crystal B(A) of the basic representation V(A) is realized as the abstract
crystal Y(A) consisting of reduced proper Young walls (see [7] for more details).

The goal of this paper is to find an effective algorithm for computing the
global basis element G(Y) in G(A) for each reduced proper Young wall Y
in Y(A). For this purpose, we first construct the Fock space representations
of quantum affine algebras in a purely combinatorial way. We take the Fock
space F(A) to be the Q(g)-vector space with a basis consisting of proper Young
walls, and define the U,(g)-action on F(A) in terms of combinatorics of Young
walls. Then the Fock space F(A) becomes an integrable U, (g)-module in the
category O;,: (see Section 5).

We then show that the crystal of F(A) is isomorphic to the crystal Z(A)
consisting of proper Young walls (Theorem 6.1). As a corollary, we get an
explicit decomposition of the Fock space F(A) into a direct sum of irreducible
highest weight U,(g)-modules by locating the maximal vectors in the crystal
Z(A) (Corollary 6.2).

In [13], Kashiwara, Miwa, Petersen and Yung gave a more abstract con-
struction of the Fock space representations of quantum affine algebras. For a
dominant integral weight A of level [ > 1, the Fock space F(A) was realized
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as the inductive limit of g-deformed wedge spaces arising from a level [ per-
fect representation. We expect one can construct the higher level Fock space
representations of quantum affine algebras using combinatorics of Young walls.

Finally, we give a generalized version of Lascoux-Leclerc-Thibon algorithm
([14, 15]) for constructing the global bases of basic representations of classical

quantum affine algebras of type A (n > 1), Aff;)_l (n > 3), DY (n > 4),
Agl) (n>1), Dfll (n > 2) and B{M (n > 3). More precisely, for each reduced
proper Young wall Y in Y(A), we obtain an effective algorithm for computing
the global basis element G(Y') in G(A) that can be expressed as a Z[g]-linear
combination of proper Young walls (Theorem 7.13):

GY)= ) Gyzlg)Z forsome Gy,z(q) € Z[g).
ZeZ(A)
By construction, the matrix coeficients Gy, z(g) satisfy certain unitriangular
conditions. We expect that there exist some interesting algebraic structures
such that the irreducible modules at some specializations are parametrized
by reduced proper Young walls and that the decomposition matrices are deter-
mined by the polynomials Gy, z(g) giving the global basis elements (cf. [1, 2, 3}).

1. Quantum groups

Let I be a finite index set. A square matrix A = (ai;)ijes is called a
generalized Cartan matriz if it satisfies: (i) a;; = 2foralli € I, (i) a;; € Z<o
for all 4,5 € I, (ili) a;; = 0 implies a;; = 0. In this paper, we assume that
A is symmetrizable; i.e., there is a diagonal matrix D = diag(s; € Zgli € I)
with positive integral entries such that DA is symmetric.

Consider the free abelian group

corank A
(1.1) P\‘:(@th)@ P zd ],

el j=1

and let § = Q ®z PV. The free abelian group PV is called the dual weight
lattice and the Q-vector space hy is called the Cartan subalgebra.
The weight lattice and the set of simple coroots are defined to be

(1.2) P={xep | XPV)cZ}, W={hliell

We denote by IT = {a;| i € I} the set of simple roots, which is a linearly
independent subset of §* satisfying

(1.3) ai(h;) =a; forall i,j€l.

Definition 1.1. The quintuple (4, PV, P,IT1V,II) defined above is called a Car-
tan datum associated with A.

We denote by Pt = {\A & P| A(h;) >0 for alli € I'} the set of dominant
integral weights. The free abelian group @ = €D;<; Za is called the root lattice.
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We set Q1 = > ;o Z>oo; and Q_ = —Q4. There is a partial ordering on bh*
defined by A > p if and only if A — 4 € Q4. Since the generalized Cartan
matrix A is symmetrizable, there is a nondegenerate symmetric bilinear form
(1) on h* satisfying

_ (a]ai) 2(aila;)
si—T and (onlos)

For an indeterminate g, set ¢; = ¢* and define

=q;; forall i,j€l.

—-n

L= | O e

q; — q; —n]z'[n]z'

Definition 1.2. The quantum group Uy(g) associated with a Cartan datum
(A, PY,P,I1V,1I) is the associative algebra over Q(g) with 1 generated by the
symbols e;, f; (i € I) and ¢" (h € PV) subject to the following defining
relations:

=1, ¢"¢" =" (h,h € PY),

"eiq " =% Wei, ¢"figh =W (ke PY, i€,

eifi — fiei = 52-1'}{’:—_{{_’;, where K; = g%",
14 ., o
S ] e =0 ),
o Z
e e R !
k=0 2

The quantum group U,(g) has a Hopf algebra structure with the comultipli-
cation A, counit €, and antipode S defined by

Ald") =q"®q",

Ale)=e; @K ' +1®e;, A(fi)=fi®1+K;9 fi,
ed") =1, ele)) =¢(fi) =0,

S(@)=q", Se)=-eKi, S(fi)=-K'f;
forhe PVandiel.

(1.5)

Let U™ (resp. U~) be the subalgebra of U,(g) generated by the elements
e; (resp. f;) for i € I, and let U° be the subalgebra of U,(g) generated by ¢"
(h € PVY). Then we have the triangular decomposition :
U(e) 2U oUqUT.

A U,(g)-module V is called a weight module if it admits a weight space
decomposition V = @, p Vi, where V, = {v € V| ¢"v = ¢*®y forall h €
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PY}. If dimgyg) Vi < oo for all p € P, we define the character of V' by

chV = Y (dimg(y V) e,
peP

where e* are basis elements of the group algebra Q(¢)[P] with the multiplication
given by e*e” = e** for all y,v € P.

A weight module V over U,(g) is called a highest weight module with highest
weight A (A € P) if there exists a non-zero vector vy € V (called the highest
weight vector) such that (i) e;vy =0foralli € I, (ii) g"vy = ¢*™u, for all
he PY, (iil) V = Uy(g)va.

For example, let J()\) denote the left ideal of U,(g) generated by e;, ¢" ~
@M1 forieI, he PV, and set M(\) = Uy(g)/J(\). Then, via left multipi-
cation, M(A) becomes a highest weight U,(g)-module with highest weight A,
called the Verma module, and it satisfies the following properties:

Proposition 1.3 (cf. [4]). (a) M(A) is a free U™ -module of rank 1.

(b) Every highest weight U,(g)-module with highest weight X\ is a homomor-
phic image of M(A).

{¢) M()) contains a unique mazimal submodule R()).

The unique irreducible quotient V{\) = M(A\)/R(}) is called the irreducible
highest weight U, (g)-module with highest weight .

Definition 1.4. The category O, consists of U, (g)-modules M satisfying the
following properties:
(i) M is a weight module,
(ii) there exist finitely many A;,...,As; € P such that
wt(M) = {p € P| M, #0} C | J (N - Q4).
Jj=1
(iil) e; and f; (i € I) are locally nilpotent on M.

The basic properties of the category O;,; are given in the following propo-
sition.

Proposition 1.5 (cf. [4]). (a) For each i € I, let Uy be the subalgebra of
U,(g) generoted by e;, fi, Kfl, which is isomorphic to the quantum group
U,(sly). Then every U,(g)-module M in the category O;ne is a direct sum of
finite dimensional irreducible U;)-submodules.

{b) The category Oins is semisimple. Moreover, every irreducible object in
the category Oy has the form V(X) with A € PT.

2. Crystal bases

In this section, we briefly review the crystal basis theory for quantum groups
developed by Kashiwara ([9, 10]). We will also use the following notation for
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divided powers:
e =er/nt, £V = £/l
Fix an index ¢ € I and let M = @, . p M be a U;(g)-module in the category
Oint. By the representation theory of Uy,(sly), every element v € M) can be
written uniquely as
v = Z fi(k)vk,

k>0
where k > —A(h;) and vg € kere; N My4kq,. We define the endomorphisms €é;
and f; on M, called the Kashiwara operators, by

(2.1) éiv = Z fi(k_l)vk, fiv= Z fi(k+1)vk.

k>1 E>0

Let Ao = {f/g € Qg)| f,9 € Qlg], 9(0) # 0} be the subring of Q(q) con-
sisting of the rational functions in ¢ that are regular at ¢ = 0.

Definition 2.1. A crystal basis of M is a pair (L, B), where
(i) L is a free Ag-submodule M such that M = Q(q) ®a, L,
(i) B is a basis of the Q-vector space L/qL,

(iii) L = @,cp Lx, where Ly = LN My,

(iv) B = | |yep B, where By = BN (Lx/qLy),

(vy&LCL, fiL c Lforalliel,

(vi) &B C BU{0}, fiBC BU{0} foralli € I,

(vii) for b, € B, f;b = b' if and only if b = &'

The set B is given a colored oriented graph structure with the arrows defined
by

b—>b ifandonlyif fib=1b"
The graph associated with B is called the crystal graph of M and it reflects the
combinatorial structure of M. For instance, we have

dimQ(q) My =#B) foral AeP.

Let (L, B) be a crystal basis of a U,(g)-module M in the category O;p:. For
each b € B and ¢ € I, we define

g;(b) =max{k>0| &b ec B}, i) =max{k>0| ffbe B}.
Then the set B satisfies the following properties.
Proposition 2.2 ([10, 11, 12]). (a) For alli € I and b € B, we have
@i(b) = €i(b) + (hi, wt(D)),
wt(é;b) = wt(b) + o,
wt(fib) = wt(b) — as.



FOCK SPACE REPRESENTATION OF QUANTUM AFFINE ALGEBRAS 1141

(b) If &;b € B, then

gi(€b) =ei(b) =1, i(€:b) = pi(b) + L.
(c) If f;b € B, then

ei(fid) =) + 1, @i(fib) = pi(b) — 1.

Moreover, the crystal bases have extremely simple behavior with respect to
taking the tensor product.

Proposition 2.3 ([9, 10]). Let M; (j = 1,2) be a Uy(g)-module in the category
Oint and let (L;, B;) be its crystal basis. Set
L=1L®u L2y, B=DB;xB,.

Then (L, B) is a crystal basis of M1 ®q(q) M2 with the Kashiwara operators on
B given by

é;b b i >

&i(by @ by) = 61(2?2 if pi(b1) > €i(b2)

b] ® 6ib2 Zf (pz(bl) < z(b2)7
fibl®~b2 if ¢i(b1) > €i(b2)
b ® fiba if pi(b1) < eilbe).

The set B; X By will be denoted by By ® Bs. The tensor product rule
in Proposition 2.3 gives a very convenient combinatorial description of the
action of Kashiwara operators on the multi-fold tensor product of crystal basis.
Let M; be a Uy(g)-module in the category O;,: with a crystal basis (L;, B;)
(j =1,...,N). Fix an index i € I and consider a vector b =b; ® --- @ by €
Bi®---®@Bn. Toeach b; € B; (j =1,...,N), we assign a sequence of —’s
and +’s with as many —’s as €;(b;) followed by as many +’s as ¢;(b;) :

b=b1®b® - @by

fi(by ® b)) = {

R

(= ey T T S
N N e’ St S —~
ei(b1) wi(b1) ei(bn) pi(bn)

In this sequence, we cancel out all the (+, —)-pairs to obtain a sequence of —’s
followed by +’s:

(2.2) i-sgn(d) = (—, —, ..., —, F,+,- .., +).
The sequence i-sgn(b) is called the i-signature of b.
Now the tensor product rule tells that €; acts on b; corresponding to the

rightmost — in the é-signature of b and f; acts on by corresponding to the

leftmost + in the ¢-signature of b:
Eb=01®---®&b;®---®bn,

(2.3) < z

fib=b1® - @ fibr ® - ®bn.

We define é;b = 0 (resp. f;b = 0) if there is no — (resp. +) in the i-signature
of b.
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By extracting the properties of crystal graphs, we define the notion of ab-
stract crystals as follows ([11, 12]).

Definition 2.4. Let (A, PV, P,IIV,II) be a Cartan datum and let U,(g) be the
corresponding quantum group.

A crystal associated with (A, PV, P,IIV,II) (or a Uy(g)-crystal) is a set B
together with the maps wt: B — P, ¢; : B = ZU{—0}, ; : B & ZU{~oc},
€ : B— BU{0}, and f; : B — B U {0} satisfying the following conditions:

(i) for all i € I, b € B, we have
¢i(b) = €i(b) + (hi, wt(b)),
wt(€;b) = wt(b) + a,
wt(f;b) = wt(b) — e,
(ii) if &b € B, then
ei(€;b) = €;(b) — 1, (pi(éib) =;(b) + 1,
(iii) if f;b € B, then
51(f1 ) =ei(b) +1, ‘Pi(fib) =p;i(b) — 1,
(iv) fib=1'if and only if b = &' for all i € I, b,b' € B,
(v)if g;(b) = —o0, then &b = fib=0
For instance, if (L, B) is a crystal basis of a U,(g)-module in the category

Oint, then B is a Uy(g)-crystal.

Definition 2.5. Let B; and B: be crystals. A morphism of crystals (or a
crystal morphism) v : By — By is a map ¢ : B; U {0} — B2 U {0} satisfying
the conditions:

(i) %(0) =0,

(ii) if b € By and ¥(b) € By, then

wt(¥ (b)) = wt(b), &i(¥(b)) =ei(b), wi(¥(b)) = wi(b),

(iii) if b, b’ € By, ¥(b), (V') € By and f;b = ', then fip(b) = v(b').
Definition 2.6. The tensor product By ® Bs of the crystals B; and B; is
defined to be the set By x Bs whose crystal structure is given by

Wt(bl ® b2) = Wt(bl) + Wt(bg),
gi(b1 ® by) = max(e;(b1), &:(b2) — (hi, wt(b1))),
@i(b1 ® ba) = max(ii(b2),£:(b1) + (hs, Wt(b2))),

)
(2.4) . _ éib1 ®by  if ;(b1) > €4(ba),
61(b1 ® bz) o {b1 Q é;by if (Pi(bl) <eg ( )
: _ fib1 ®by if pi(b) > e:(b2),
filbr ®b2) = {b1®fib2 if ¢i(b1) < €i(b2).
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Here, we denote b; ®bs = (b1, b2) and use the convention that b; ®0 = 0Qbe = 0.
With the above definitions, we can check that the category of crystals becomes
a tensor category.

The existence and uniqueness theorem for crystal bases is given as follows.

Theorem 2.7 ([10]). Let V() be the irreducible highest weight Uy(g)-module
with highest weight A\ € Pt and highest weight vector vy. Let L()\) be the free
Ag -submodule of V() spanned by the vectors of the form fi, -+ fi,ux (i, €
I,r € Zxo) and set

B(\) = {fiy -+~ fi,ux +¢L(A) € L(V)/qL(N} \ {0}.
Then (L(X), B()\)) is a crystal basis of V(A) and every crystal basis of V(A) is
isomorphic to (L(\), B(A)).

One can globalize the main idea of crystal basis theory. Consider the -
algebra automorphism of U,(g) defined by

(25) 6:q_17 e_izei7 ﬁ:fia qh:q_h for ’LEI,hEPv
This induces a (linear automorphism of V() given by
(2.6) Puy — Pvy for P € U,(g),

where vy, denotes the highest weight vector of V(A). Let A = Q[g,¢™!] and
define V(A)a = Ugva, where U, is the A-subalgebra of U,(g) generated by

F™ (i € I,n € Z>p). Then we have

Theorem 2.8 ([10, 16]). There exists a unique A-basis G(A) = {G(b) €
VNanNLA) | be BN} of V(A)a such that

G(b) = G(b), G(b)=b (mod gL(\)) for all be B(A).
The basis G(A) of V(X) given in Theorem 2.8 is called the global basis or the
canonical basis of V() associated with the crystal basis (L(A), B(A)).
3. Quantum affine algebras

Let I ={0,1,...,n} be an index set and let A = (a;;),jer be a generalized
Cartan matrix of affine type. We denote by

Pv=Zh0@Zh1@®Zhn@Zd

the dual weight lattice and IIV = {h;| i € I} the simple coroots. The simple
roots a; and the fundamental weights A; are given by

ai(hj) = aji,  oui(d) =doy,
Ai(h;) = 645, Ady=0 (5,5 €l).
We define the affine weight lattice to be
P={\ep*| \NP")CZ}.
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The quintuple (A, I, 11V, P, PV) is called an affine Cartan datum. To each
affine Cartan datum, we can associate an infinite dimensional Lie algebra g
called the affine Kac-Moody algebra ([6]). The center of the affine Kac-Moody
algebra g is 1-dimensional and is generated by the canonical central element

¢ = coho + c1thy + - + cphn.

Moreover, the imaginary roots of g are nonzero integral multiples of the null
100t

6 =doag +diag + -+ + dpay.

Here, ¢; and d; (i € I) are the non-negative integers given in [6].
Using the fundamental weights and the null root, the affine weight lattice
can be written as

P=ZABZN S --DLA, B 7.

Set
Pt={\eP|Mh)€Lso forall icl}.

The elements of P (resp. PT) are called the affine weights (resp. affine domi-
nant integral weights). The level of an affine dominant integral weight A € PT
is defined to be the nonnegative integer A(c).

Definition 3.1. The quantum affine algebra U,(g) is the quantum group as-
sociated with the affine Cartan datum (A, IL, 11V, P, PV).

The subalgebra of U,(g) generated by e;, f;, KijEl (i € I) is denoted by
U,(9), and is also called the quantum affine algebra.

In this paper, we will focus on the quantum affine algebras of type Aﬁﬁ)
(n>1), AZ) | (n >3), DY (n > 4), A7) (n 2 1), DY), (n > 2) and BY
(n>3).

4. Combinatorics of Young walls

In [7], Kang introduced a new family of combinatorial objects called the
Young walls which can be viewed as generalizations of colored Young diagrams,
and gave a realization of crystals B(A) for the basic representations of quantum
affine algebras in terms of reduced proper Young walls. In this section, we briefly
explain the combinatorics of Young walls.

The Young walls are built of colored blocks of three different shapes. They
are called the blocks of type I, type II, and type III, respectively. For each type
of quantum affine algebras, we use different sets of colored blocks.
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Type Width | Thickness | Height | Volume
I 1 1 1 1
I ol 4|
m | (= = 1 : 1 :

For each dominant integral weight A of level 1, we fix a frame Y, called the
ground-state wall of weight A, and on this frame, we build a wall of thickness

less than or equal to one unit which extends infinitely to the left. The rules for
building the walls are as follows:

(1) The colored blocks should be stacked in columns. No block can be
placed on top of a column of half-unit thickness.

(2) Except for the right-most column, there should be no free space to the
right of any block.

(3) The colored blocks should be stacked in a specified pattern which is

determined by the type of the quantum affine algebra U,(g) and the
level 1 dominant integral weight A.

The coloring of blocks, the description of ground-state walls and the patterns
for building the walls are given in [7] (see also Appendix).

Example 4.1. If g = Bél) and A = Ag, we use the colored blocks

. G 6] &

The walls are built on the ground-state wall

Yy = :... PAVAYAYA

following the pattern given below.

n Wl N
[ SV [VS] (VS g )
[S [VS] [VE1 I )
[S-I (V4] (V] I )

—
o
—
(=]
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A wall Y built on the ground-state wall Y, following the rules given above is
called a Young wall on Yy, if the heights of its columns are weakly decreasing
as we proceed from right to left. We often write Y = (yx)52 = (..., ¥2,¥1,%0)
as an infinite sequence of its columns.

Definition 4.2. (1) A column of a Young wall is called a full column if its
height is a multiple of the unit length and its top is of unit thickness.
(2) For quantum affine algebras of type Agi)_l (n>3), D (n>4), Afn)
(n>1), fo_l)_l (n > 2) and BY (n > 3), a Young wall is said to be
proper if none of the full columns have the same heights.
(3) For quantum affine algebras of type A (n > 1), every Young wall is
defined to be proper.

Let Z(A) denote the set of all proper Young walls on Y. Then Z(A) can
be given a U,(g)-crystal structure as follows.

Definition 4.3. Let Y = (yx)2, be a proper Young wall on Y.

(1) A block of color ¢ (in short, an i-block) in Y is called a removable -block
if Y remains a proper Young wall after removing the block. A column
in Y is said to be i-removable if the column has a removable é-block.

(2) A place in Y is called an admissible i-slot if one may add an ¢-block
to obtain another proper Young wall. A column in Y is said to be
i-admissible if the column has an admissible i-slot.

Example 4.4. In the following figure, we consider a proper Young wall for
g = Bél) built on the ground-state wall Y, and indicate all the removable

blocks and admissible slots.
<—admissible 2-slot

removable 0-block %{4e—removable 1-block

admissible 3-slot \

3
removable 2-block— 2

admissible 1-slot —= |%7| %] %4

not removable 3-block

(=]
NO[Op ] N2

Fix an index ¢ € I and let Y = (yx){2, be a proper Young wall on Y. To
each column y; of Y, we assign its i-signature as follows:

(1) we assign — — if the column y; is twice i-removable (the i-block will
be of type II);

(2) we assign — if the column is once i-removable, but not i-admissible
(the i-block may be of type I, II, III);

(3) we assign — + if the column is once i-removable and once i-admissible
(the i-block will be of type II});

{(4) we assign + if the column is once i-admissible, but not i-removable
(the i-block may be of type I, IT, III);
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(5) we assign + + if the column is twice i-admissible (the i-block will be
of type II).
Then we get a finite sequence of +’s and —’s for Y. From this sequence, we
cancel out every (4, —)-pair to obtain a finite sequence of —’s followed by +s,
reading from left to right. This sequence is called the i-signature of Y.

We now define the abstract Kashiwara operators E;, Fy (i € I) on Z(A) as
follows.
(1) We define E;Y to be the proper Young wall obtained from Y by re-
moving the i-block corresponding to the rightmost — in the i-signature
of Y. We define E;Y = 0 if there exists no — in the i-signature of Y.
(2) We define F}Y to be the proper Young wall obtained from Y by adding
an i-block to the column corresponding to the leftmost + in the ¢-
signature of Y. We define FY = 0if there exists no + in the i-signature
of Y.

Example 4.5. (a) Let g = B{" and let

cl /1

2|22

31313

31313

2222

/10/11/10

Y = 0/11/0l /1
22|22

313131313

3131313131313

2] 2 2l2f2]2]2

LA /0] L/ 0/ LA O,
ol Al pl Al AL o4

. + . P— ++ .
If i = 3, we first get the sequence (..., +,-,-,—,+=+,,,-). After cancelling

out (+, —)-pairs, we obtain the 3-signature (+,+) of Y.
Therefore, we have EzY = 0 and

ol 1

2f2]2

(3133

3¥3 (33

. 2222
= A0/ 1710
BY ol 71|01
2(2]2

31313

3 333

212 2122

70 0ATAD

ol 1ol A

(b) Let g = A{® and let
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O]
1
2
1
0]
Y: 0l]ofo0]o0
NEEE
2222
1]
[0]0J0]J0]0
LoOJ06j0iol0
- - .+ -+
If ¢ = 0, we first get the sequence (...,—,—,-,+, —+). After cancelling out

(4, —)-pairs, we obtain the O-signature (—,—,+) of Y.
Therefore, we have

T
o] [0}
= [1]
1] ]
2 B
. ki N 1]
EoY = (\0 Rk FoY = 00 0?
t|1|1]1 T
2(2(2]2 5121212
N R ERERD HEE
[TloTotoio] Bt
Next, we define the maps
wt:Z(A) — P, €:Z(A)—Z, ¢;:ZA) —Z
by
wt(Y) =A - ki,
i1 i€l
(4.1) €:(Y) = the number of —’s in the i-signature of Y,

i (Y) = the number of +’s in the i-signature of Y,

where k; is the number of i-blocks in ¥ that have been added to Ya.
Then we have :

Theorem 4.6 ([7]). The set Z(A) together with the maps wt : Z(A) — P,
Ei, F; : Z(A) — Z(A) U {0}, and g5,0; : Z(A) — Z (i € I) becomes a
U, (g)-crystal.

Let § = doag + - - - + dnap, be the null root of Uy(g), and set

d;  if g#D®?
(4.2) a; = R
2d; if g=D),.
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Definition 4.7. (1) The part of a column in a proper Young wall is called
a d-column if it contains ag-many 0-blocks, a;-many 1-blocks, ..., a,-
many n-blocks in some cyclic order.

(2) A d-column in a proper Young wall is called removable if it can be
removed from the top to yield another proper Young wall.

(3) A proper Young wall is said to be reduced if none of its columns contain
a removable §-column.

Example 4.8. (a) The following are §-columns for g = Bél).

NEZIBIN

(b) Consider the following proper Young walls for g = Bél). The first one is
reduced, but the second one is not. Note that the second Young wall contains
a removable é-column.

5 2
21 )
1
—2 2
3 |
33 | 3 |
3
2 2 —2
0
‘1 1A0
- ol 1

Let A be the volume of the 4-column. We list the value of A for each
quantum affine algebra Uy(g) in the following table.

Udg) | A
Ag) n
Ag}_1 2n -2
DY | 2n—4
A(22n) 2n
D 22721 2n
BY |on—2

Note that A is not necessarily equal to the Coxeter number or to the dual
Coxeter number for g (cf. [6]).

Let Y(A) C Z(A) be the set of all reduced proper Young walls on Y. Then
we have:

Theorem 4.9 ([7]). ForallieI andY € Y(A), we have
EY e Y(M)U{0}, EY e Y(A)u{0}.
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Hence Y(A) is a Uy(g)-crystal. Moreover, there exists an isomorphism of Uy(g)-
crystals

Y(A) = B(A) given by Yp — ua,
where B(A) is the crystal of the basic representation V(A) of Uy(g) and up is
the highest weight vector in B(A).

Example 4.10. The crystal Y(Ap) for Uq(B?(,l)) is given as follows

NN — &

NE
\
NEIE /

=

w
-—
\
o ——

w

] -4

P
-
A

[V

SE Z{\ g

N
— NV

/
[ + ]

[S}

BSEE

N

X

Remark 4.11. When ( is a primitive n-th root of unity, the finite dimen-
sional irreducible representations of the (finite) Hecke algebra Hn({) can be
parametrized by n-reduced colored Young diagrams. Observe that they are the
same as the reduced proper Young walls of type A(nlll. We expect that for each
type of classical quantum affine algebras and level 1 dominant integral weights,
there exist some interesting algebraic structures whose irreducible represen-
tations (at some specialization) are parametrized by reduced proper Young
walls. In [2], Brundan and Kleshchev verified this idea by showing that the
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irreducible representations of the Hecke-Clifford superalgebra Hy({) with ¢
a primitive (2n + 1)-th root of unity are parametrized by the set of reduced

proper Young walls of type Agi) with N blocks.

5. Fock space representation

Let F(A) = @yezn) Q@)Y be the Q(g)-vector space with a basis Z(A)
consisting of proper Young walls. The goal of this section is to define a U,(g)-
module structure on F(A), the Fock space representation of U,(g).

For this purpose, we introduce some terminology. Let ¥ = (yx)52, be a
proper Young wall on Y3, and let |yx| denote the number of blocks in y, added
to Y. We define the associated partition of Y tobe [Y| = (.. lykl- - -, [v1], [yol)-
For proper Young walls Y = (yi)3>, and Z = (2)52, in Z(A), we define
[Y| > |Z| if and only if 372, lyk| > 3 pey |2| for all I > 0. For example, if

3 |
5 2
1 0,
1
212
713 2|2
Y et 31313 and Z = 313
21212 313
o140 212
i Vi 0 1 0
1l /0l /1

then we have |Y| = (3,5,7) > |Z| = (1,5,9).

Note that it is not a partial ordering on Z(A) since there exist ¥ # Z in
Z(A) such that |Y| = |Z|. However, it induces a partial ordering on the set
of associated partitions. (The readers may want to compare it with the usual
dominance ordering. See, for example, [17])

Let S={k|s <k <t} forsome0<s<t<oo Then S is a finite or an
infinite interval in Z>o. We define the (S-)part of Y to be Ys = (yx)res. For
example, if S = {k € Z>o|k > s}, the Ys = (y&)32, is itself a proper Young
wall in Z({A') for some level 1 dominant integral weight A’. On the other hand,
ifS={k|s<k<t<oo}is a finite interval, Ys is no more a proper Young
wall, but a finite collection of columns in Y. By restricting our attentions to
the columns in Ys, we may define the notions of admissible ¢-slots, removable
i-blocks, the i-signature of Ys, ¢;,(Ys), and ¢;(Ys) (however, wt can be defined
for proper Young walls only).

Example 5.1. When g = Aff) and A = Ag, consider

[0 ]
glojJojJo]o
11111

— >
Y-—(yk)k=0— 2121221212
tlrfrfafz]2
0J0]06l0 00|
efotoTofolo .
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Note that the O-signature of ¥ is + and hence go(Y) = 0, po(Y) = 1. If
S =1{0,1,2,3,4}, then we have

[0 ]

0o JoJolo
11111
Ys= [L]2]2]2]2
11112

0 10 ]0]06]0
olololoto] ,

eo(Ys) = 2 and ¢o(Ys) = 0 since the O-signature of Y = ——.

We will now define the action of U,(g) on Z(A). Since the action of ¢"
(h € PVY) is easily defined by

(5.1) Y = ¢t WYy for ¥ e Z(A),

we will focus on the actions of e; and f; (¢ € I).
Case 1. Suppose that the i-blocks are of type L.

Let b be a removable i-block in y;, of Y. We define Yg(b) = (yr—1,.--,%1,%0)
to be the part of ¥ consisting of the columns lying at the right of b, and set

(5.2) Ri(b;Y) = pi(Yr(D) — ei(Yr(D))-

If £ = 0, we understand Yg(b) = 0 and R;(b;Y) = 0. We denote by Y 7 b the
Young wall obtained by removing b from Y. Then we define

(5.3) ei¥ =Y ¢ My 1),
b

where b runs over all removable i-blocks in Y.

On the other hand, if b is an admissible i-slot in y; of Y, then we define
Y () = (..., yk+2,yr+1) to be the Young wall consisting of the columns in ¥V
lying at the left of b, and set

(5.4) Li(b;Y) = i (Y (b)) — &:(YL(D)).

Here, the wall Y7, (b) is a proper Young wall on Y, for some level 1 dominant
integral weight A’. We denote by ¥ /' b the Young wall obtained by adding
an i-block at b. Then we define

(5.5) Y =3¢ o),
b

where b runs over all admissible ¢-slots in Y.

Example 5.2. (a) If g = Agl), A = Ag and i = 0, then ¢ = ¢ and we have
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2 2 2 2
011 o1 of1 1
€0 210] =y 2o 4 20] 441 2 1o
of1]2 ol1]2 1]2 of1|2
2(o}1 2 (o1 2101 2101
ol1l21{o0 120 ol1]21o0 oli1fz2]o
Lo Lo ,
— — — 0
2 2 2 —
| < | | < N
1 1 0|1 L—
- 1
20| —1 0 0
fo =q + +4q 210
12 of1]2 1]e
1]2
2101 2101 2101
2 (o1
|o 12]o |0 120 W 1]2]o
[0 1|20
2 .
(b)Ifg:Aé),A:AoandzzZ,thenzp:qandwehave
3 3 3 3
2|2 2 |2 2|2 2
001 001 001 1 001
€ 2212 + 2]2] T4 222
333 3133 3|33
2f22]2 22212 202022
VA4 AP VA A A oA ,
- _ _ 2
3 3 3 —
2] 2] 3
2 2 212
2
10 01 1 10 01 001 0
— e (¢} 1
f2 2l2]=¢ 2 (22| *+ 22| + 4
2|2
333 3(3]|s HERE
LRERE
220212 2222 2222
BV LY, 2222
APz “TQif 1,>:ﬁf011:0 o/ 1001 £ 94 =
ol 10 1

Case 2. Suppose that the i-blocks are of type II.

In this case, we have g¢; = q. Let b be a removable i-block in y, of Y. If the ¢-
signature of yy is ——, or if the i-signature of y;, is — and there is another i-block
beneath b, we define Y ' b to be the Young wall obtained by removing the
block b from Y. If the i-signature of gy is —+, or if the {-signature of y; is — and
there is no i-block beneath b, then we define Y b= ¢~!(1 — (—¢?)!®+1)Z,
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where Z is the Young wall obtained by removing the block b from Y and I(b)
is the number of y;’s with ! < k such that |y;| = |yg|. That is, if

]
1

Y = Yr(b)

(1= (—g»)'®+

then Y/‘b:Tx_,m

In either case, we define Yr(b) = (yi,. .., %0), where [ is the integer such that
lyx| = lyp—1] =--- = lyi+1| < |yi], and set

(5.6) Ri(B;Y) = ¢i(Yr(D)) — e:(Yr(D)).

If ¥ = 0, we understand Yg(b) = § and R;(b;Y) = 0. Then we define
(5.7) eY = Zqi—Ri(b;Y)(y b)),
b

where b runs over all removable i-blocks in Y.

On the other hand, suppose that b is an admissible i-slot in y of Y. If the
t-signature of y;, is ++, or if the i-signature of y; is + and there is no i-block
beneath b, then we define Y ./ b to be the Young wall obtained by adding an -
block at b. If the i-signature of yy, is —+, or if the i-signature of g, is + and there
is another i-block beneath b, then we define Y /' b = ¢~ (1 — (—¢?)!®+1)Z,
where Z is the Young wall obtained by adding an i-block at b and (b) is the
number of y;’s with [ > k such that |y;| = |yk|- That is, if

Ho—
_ T I
Y= | N\,

Y. (b)

(1= (=¢»)'®*) v 1
~

then Y /b= q
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In either case, we define Y7, (b) = (..., 4142, ¥1+1), where [ is the integer such

that [yia| < || = lyi—1| = -~ = |yxl, and set
(5.8) Li(b;Y) = @i(YL(b)) — &i(YL(D))-
Then we define
(5.9) LY =YY v b),
b

where b runs over all admissible i-slots in Y.

Example 5.3. If g = Af), A = Ag and ¢ = 0, then we have

[0]

0lololo1lo

SN BN RN

2122122

11112

[0 (o lo o]0

Gtoiololo]
g 0 o JoJoJlo o0
. RN ERENERE
2 + 291222122
1 NERERER R
AL o loToTo oot
[0 |
O I O O O ) o To T
ENENENENE 1]

_ 1 10

= q 221221212 + (1+¢'7) 2lal21212 |2
S ENANENRNE 'R FR R ER R
e 2 o JoJolololool

Case 3. Suppose that the i-blocks are of type III.

If b is a removable i-block in g, of V', then we define Y ' b to be the Young
wall obtained by removing the block b from Y. We also consider the following
i-block b in y; of Y, which we call a virtually removable i-block.
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I ]

~_A Yr(b) - [X] Yr(b)
Y = I(b b or 1(by—" b

In this case, we define Y b to be

(—Qi)l(b) % (_qi)l(b) %
and

respectively, where I(b) > 1 is given in the above figure. Note that, unlike Case
1 and Case 2, we need to shift the blocks from left to right and from back to front

(resp. from front to back). In either case, we define Yr(b) = (yx-1,---,%0),
and set
(5.10) Ri(b;Y) = ¢i(Yr(D)) — &i(YR(D)).
If £ =0, we understand Yg(b) = § and R;(b;Y) = 0. Then we define
(5.11) ey =3 ¢ MOy ),
b

where b runs over all removable and virtually removable i-blocks in Y.

On the other hand, if b is an admissible i-slot in y; of Y, then we define
Y b to be the Young wall obtained by adding an i-block at b. We also
consider the following i-slot b in yx of Y, which we call a virtually admissible
i-slot:

] (s or l('b

Yz (b) YL(b)

b<
I

In this case, we define Y /' b to be

(_qi)l(b)x (_qi)l(b)x
and )
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respectively, where I[(b) > 1 is given in the above figure. Here again, one can
observe that we need to shift the blocks from left to right and from back to front
(resp. from front to back). In either case, we define Y..(b) = (..., Yk+2, Ye+1)
and set

(5.12) Li(b;Y) = @i (YL.(b)) — £:(YL ().
Then we define
(5.13) LY =Yg ),

b

where b runs over all admissible and virtually admissible i-slots in Y.

Example 5.4. If g = B?(,l), A = Ag and i = 0, then gy = ¢* and we have

) )
AYAVAvs 1,001
al22]2 al2]2]2
2
e 313 1313] = 3151313
i N R " 55T
2222 22022
TACATAL TACA 170
/6| /1 Al A4 blALALA]
D
1 ol 1011
2|2 )22 2222
+ ¢ G + 33133
3131313 R ENERE
2121212 212 (2|2
TA0ALAC TACATAC,
‘0l 1011 (1 Va1 Ve
16|41 16l ol /101
2021212 20212 2222
fEEIETE] = iels] + ¢ Bl
3 T3lals 31313 331313
2222 222 2lal2]2
TACATA oL A5A1/0 TA0A A0
A4 6 A Ao A ol A0l A
L0 0
1 161
20222 2222
+ S EEEE + ¢ EEEE
3 {31313 3131313
2 {2212 2222
TAATAT TAGATAG
sl AL LA ALA

With these actions, we have
Theorem 5.5. The Fock space F(A) is a Uy(g)-module in the category Oin:.

To prove this theorem, we need to verify that all the defining relations in
(1.4) hold in F(A). First, it is straightforward to verify that the following
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relations hold
"My ="y,
(5.14) g"eig™"Y = ¢ WeyY,
¢ fig"Y =My
for Y € Z(A), i € I and h,h' € PV. Also, it is clear that e; and f; (i € I)
act locally nilpotently on F(A). Therefore, by Proposition B.1 in [13], we have
only to show that

K, - K
(5.15) (eifs = fie)Y =04~ — =¥

forY € Z(A) and i,j € I.
The rest of this subsection will be devoted to proving the relation (5.15).
We first investigate the local behavior of U,(g)-action on F(A).
Fix i € I and let Y be a proper Young wall. We will decompose Y into a
sequence Y = (Yp,Y1,...,Y,) of parts, reading from left to right, which are
called the i-component of Y.

Case 1. Suppose that i-blocks are of type I. Observe that the admissible
i-slots and removable i-blocks in Y appear in one of the following situations:

i
YN

In case I, let yny be the column containing the admissible i-slot in the
ground-state wall or the removable i-block that touches the ground-state wall
as indicated in the above figure. We denote by Y, the part of Y consisting of
yn and the blocks in the ground-state wall lying in the left of yx, and call it
an i-component of type L.

In case Ip, the column which is i~admissible or i-removable is called an i-
component of type Iy. If yx is the left-most i-component of type Iy and there
is no i-component of type I, we denote by Yy the part of Y consisting of the
blocks lying in the left of yx. In this case, we call Yy a trivial i-component.
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The parts of Y lying between two i-components of type I or Iy will also be
called the trivial i-components.

In this way, we obtain a unique decomposition ¥ = (¥p,Y3,...,Y;) of Y,
where each of Y; is an i-component of type 1, or Iy, or a trivial i-component.

Example 5.6. Let g = A?), A=Ajandi=2.If

3
2 |2
01

Sl |w |y
w
=3 IFCIN EUC X

Al A

then we have Y = (¥p,Y:,Ys, Ys), where

Vo=

Y1=

Y; =[5 |3 |: trivial i-component and

. i-component of type .

Let ¥ be a proper Young wall with the decomposition ¥ = (¥g,Y1,...,Y)
into i-components. To each Yk, we associate a U;)-module V; as follows. Then
wewillview Y as Yy QY1 ®---® Y, inside V@ V1 @ - @ V.

If Y} is a trivial i-component, then we associate the trivial representation
Vi = U = Q(q)u, and we identify Y; with ». If Y is an é-component of
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type I or Iy, then we associate the 2-dimensional representation V, = V =
Q(g)vo ® Q(q)v1, where the Uy;)-action is given by

Kivo = qivo, Kivy = ¢ 'y,
(5.16) eivo =0, eiv1 = v,
fivo =v1, fiv1 =0.

We identify the é-component Y; with a basis element of V' as follows :

(Too) vg € ' v i

(Io) Vo ¢ [—l v &

Note that V' is isomorphic to the 2-dimensional irreducible Uy;)-module V(1)
with the crystal basis (L, B), where

L= AO,UO D A01)1') B = {%7%}7
and the crystal graph is given by

A
Vo — V1.

Example 5.7. In Example 5.6, we have

3
9 ||
2

-
[=)
=
=

ceUVeUeV.

Y:...® ®

Clw | |
w
&

2
3
2

-
3
=l
=

Case 2. Suppose that the i-blocks are of type II. In this case, the admissible
i-slots and the removable i-blocks in Y appear in one of the following situations:

(L) J—[— J_r

YN YN
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N [

(L) (>1)

In case II, let yny be the column containing the admissible i-slot in the
ground-state wall or the removable i-block that touches the ground-state wall
as indicated in the above figure. We denote by Yp the part of Y consisting of
yn and the blocks in the ground-state wall lying in the left of yn, and call it
an i-component of type Il,.

In case Iy, the column which is i-admissible or ¢-removable is called an
i-component of type Ily. In case II;, the whole shaded part containing an
admissible i-slot or a removable i-block will be called an i-component of type
1.

Let Y7 be the left-most i-component of type II; (I > 0). If there is no i-
component of type I, then we denote by Yy the part of Y consisting of the
blocks lying in the left of Y3, and call it a trivial i-component. The parts of ¥
lying between two i-components of type Il or II; (I > 0) will also be called
the trivial i-components.

In this way, we obtain a unique decomposition ¥ = (¥5,Y7,...,Y;) of Y,
where each Y} is an i-component of type I, II; (I > 0), or a trivial -
component.

Example 5.8. Let g = Af), A=Apandi=0.If

o]

1

212

1({1]1

— 0jo0Jo]ao
Y = oJojolololo
1{1f{1}1)]1]1]1
2121212222
11111 ]1]1]1
[0]oT0oJofoj010]0
{016 To [0ioTolToTo
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then we have Y = (¥, Y1,Y5,Y3), where

Yo = : i-component of type II
0 .. TTETEToTo TS p yp 0
[0 ]
01010
11|11
Yi=[312]z 2 |: é¢-component of type Il3,
11l
0JoJolo
01010 (0]
2
1)1
010
0 0 . . .
Ys =[7 [ |: trivial i-component, and
2|2
1]1
010
010
(0]
1
2
1
Y3 = | : i-component of type Ilo.
1
2
1
0]
[0

Let Y be a proper Young wall with the decomposition ¥ = (Yp,Y3,...,Y;)
into i-components. To each Y3, we associate a Uy;)-module V; as follows. Then
wewill view Y as Yo QY1 ® .- ® Y, inside i V1 ® - - ® V..

If Y} is a trivial i-component, then we associate the trivial representation
Vi = U = Q(g)u, and we identify Y}, with u.

If Y} is an i-component of type II.,, then we must have £ = 0 and we
associate the 2-dimensional representation Vo = V = Q(q)ve © Q(q)v1, where
U(;)-module action is given by (5.16). We identify Y, with the basis element of
V as follows :

1
Uo ¢ ... O T T Ie1i] v &

2
e e T 17 4
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If Yy is an i-component of type I, then we associate the 3-dimensional
representation Vi = Wy = Q(q)wo ® Q(g)w: @ Q(q)w2, where the U;)-module
action is given by

Ko = q?wo, Koy = w1, Kaws = g; 2w,
(5-17) e;wo = 0, e;wy = (¢; + qi_l)wo, €Wy = Wi,
fiwo = wi, fawn = (g + ¢; Dwa, fiws =0.

We identify the i-component Y} with a basis element of W as follows :

wO(—)H wy < We <>

Note that W is isomorphic to the 3-dimensional irreducible Uy;)-module V(2)
with the crystal basis (L, B), where

L = Agwp © Aogwy @ Agws, B={wr|k=0,1,2}.

and the crystal graph is given by
W~ TT — T3

If Y} is an i-component of type IT; (I > 1), then we associate the 4-dimension-
al representation

Vi = Wi = Q(@)wo ® Q(@)w1 & Qq)wz & Qg)u,
where the U(;-module action is given by
Ko = ¢iwy, Kywy = w1, Kiws = ¢ *ws, Kiu=u,
eiwo =0, eqwn = g; (1 — (—¢7)"*!)wo,
(5.18) eswz = w1 + gi(1 = (—=¢}) )u, esu = wo,
fawo = wi + (1 — (=)D, fiwn = g7 (1 = (=) '+ wa,
fiwe =0, fiu=w,.

We identify the i-component Yy with a basis element of W, as follows :
!
wo ¢ ’_@ wy ¢ ’:I:III:|
wy F:EE u ’_I:IIE
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The U(;-module W, is decomposed as W; = V(2) © V(0), where
V(2) 2 Qg)wo ® Qlg)(wr +¢i(1 = (—¢7)")u) © Qlg)ws,

V(0) = Q(g)(u — (I—;(qu)T)w)

Hence, the crystal basis (L, B) of W, is given by
L =Aowo @ Ao (w1 + ¢i(1 = (—¢F)")u) @ Agws
4
Sholu - Ty
B ={ o, wr,w2,u }

with the crystal graph

Ty - W
\Li
u Wy ,

Example 5.9. In Example 5.8, we have

(0]

_ 1

3 |1

2

o] (1)3 B
O0J0 10 1o 0
1]1(1(1 [0
11 n

20222 |1
1111 212 2
Y_-'~r01'0—r0-ro—rtr|:8q@8888®(1)(1)®7
]

£io 7]

ceVeWsalUeW.

Case 3. Suppose that the i-blocks are of type III. For convenience, we
denote by * the color 4, and denote by - the color of the blocks placed on the
opposite side of the i-blocks. In this case, the (virtually) admissible i-slots and
the (virtually) removable i-blocks in Y appear in one of the following situations:

(IThe) /Vmﬂ /V\/l?(_,_l
(Illo)
] !_FH E—H_l Héﬂ
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(IIL)

II;) (1 >1)
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|

(L) 1> 1)

- L
L ]
- ]
Z A [A
L ]
(II12l+1) (l > 1)
l_ 2 A1 ,_
z A
- I
v S
— 1
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In case I, let yny be the column containing the admissible i-slot in the
ground-state wall or the removable i-block that touches the ground-state wall
as indicated in the above figure. We denote by Y; the part of ¥ consisting of
yn and the blocks in the ground-state wall lying in the left of yx, and call it
an i-component of type 1.

In case Iy, III,, III;EI and Iy (I > 1), the whole shaded part containing
(virtually) admissible i-slots and (virtually) removable i-blocks will be called
an i-component of type 111, I11;, IIIzil and Iy (I > 1), respectively.

Let V7 be the left-most i-component of type I1l,, 1115, III;EI and I1g41. If
there is no i-component of type IIl.,, we denote by Yp the part of ¥ consisting
of blocks lying in the left of Y7, and call it a trivial ¢-component. The parts
of Y lying between two i-components of type IIl.,, III, II1;, III; and IIlg 41
will also be called the trivial i-components.

In this way, we obtain a unique decomposition ¥ = (¥;,Y;,...,Y.) of Y,
where each Y; is an i-component of type I, IIly, III;, III;%, 11l or a
trivial ¢-component.

Example 5.10. Let g = B{"), A = Ag and i = 0. If

11/01,1
21212
3 [3 |3
3 |3 |3
2121212
Y = o171/ L/]0/1L 710

E D feofes] b0
Sl b0 [ v

Al
then we have Y = (Y5, Y1,Y5, Y3), where
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Yo=--- 4| Al Al A]: i-component of type I,

o/11/10

1

: i-component of type III3,

o<

I
=l Jewofes] no
S| no eofeo] o
=l [eofes] o
2l no jeofes] po

£~
ok
=)
ot

Y, = : trivial i-component, and

oSS
NNEEEENNE

Ot no {wfeo| b0
=l [eo]es] ro
2 vo [eofeo] o

i
=]
-

Y; = : i-component of type IIL; .

S| o [woles| 2o
=l no feofos] to
2| vo feojeo] o

Let Y be a proper Young wall with the decomposition Y = (Yp,Y1,...,Ys)
into i-components. To each Y%, we associate a U(;)-module V}; as follows. Then
wewill viewY as 1) ® Y1 ®@ - ® Y, inside @ V1 @ --- @ V...

If Y} is a trivial ¢-component, then we associate the trivial representation
Vi = U = Q(q)u, and we identify Yy with u. If Y} is an 4-component of type
II1,, or IIIp, then we associate the 2-dimensional representation Vy = V =
Q(q)vo ® Q(q)v1, where the U;)-module action is given by (5.16). We identify
Y). with a basis element of V' as follows:

*
UoHD Ul(—)ﬁ ’Uo(—)E] UlHﬁ
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Uo(—)ﬂ UlHﬁ Uo(—)ﬁ ’Ul(—)
If Y, is an i-component of type III;, then we associate the 5-dimensional
representation

Vi = Wi = Q(g)wo © Qg)w: & Qlg)ws © Qlg)u & Qg)u’,
where the U(;)-module action is given by
Kiwo = qjwo, eswo =0, fiwo = w1 + qits,
Kow, = wy, e;wy = q[lwo, fiwy = q{lwg,
(5.19) Kows = g; *wa, e;wy = w1 + qiu, fiwe =0,
Ku=u, e;u=wy, fiu= ws,
Kau' =4, esu’ = —qawo, fiv' = —gqiws.

We identify the i-component Y}, with a basis element of W; as follows:

Wy < wy wy
U u &
* *'*
wy & wy & wy &
& *
u u &

The U;)-module W, is decomposed as W1 = V/(2) @ V(0) & V(0), where
V(2) = Q@)wo @ Qg) (w1 + gsu) ® Qg)w2,
V(0) = Q) (v — qawi) = Q) (v + giwn).
Hence, the crystal basis (L, B) of W is given by
L = Agwo ® Ag (w1 + qiu) © Agwa
(5.21) ® Ao (u — qswr) @ Ao (v + ¢wy),

B = {wg, w1, ™z,T, u' }

(5.20)
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with the crystal graph
o — TT —> T3 u o

If Yy is an é-component of type III;',, then we associate the 4-dimensional
representation

Vi = Wi = Qlq)wo ® Qlg)wr & Q(q)wy © Qlg)w},

where the U;)-module action is given by

Kiwo = qywo, Kywy = ¢ wn,

Kiwg = qiwg, Kaw) = g7 wy,
5 99 eswp = 0, eqw; = wo g2 wp,
(5.22) e;wy =0, e;w) = wy,

fiwo = w1 F ¢lwy, fiwr =0,

fowg = w, fiwy = 0.

We identify the i-component Y}, with a basis element of W;lt as follows :

Wsi
o A& % %
wp & 2l wy &
% |7 * |7
wy Wi«
4 T 4
Wy w1 &
4 ... £ |7
wh wi <
Wy
A
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wh wi €

7 7 A
Wo w; &
wy € wi &

The U;)-module Wit is decomposed as W = V(1) ® V(1), where

(5.23)

V(2) = Q(q)wo ® Qg) (w1 F ¢¥w)),
= Q(g)wy ® Qlg)w; -

Hence, the crystal basis (L, B) of W;l: is given by

(5.24)

L = Agwo ® Ao (w1 F ¢?'w}) ® Agwp @ Agw],

B = {5, oy, wh, wi }

with the crystal graph

i — i 7
Wy — W1 wh — wi.

If Y} is an i-component of type Il 14, then we associate the 6-dimensional
representation

Vi = Warp1 = Q@)wo @ Qlg)wr & Qlg)wz & Qg)u & Qg)u’ ® Qg)u”,

where the U(;-module action is given by

(5.25)

2 2U+1
Kiwg = giwo, e;wo =0, fiwo = w1 + qiu+ g2+

1
) u,

— _ -1 _ -1
Kowy =wq, eswy = q; Wo, fiwn =4q; W2,

_ =2 _ 2041, 1 _
Ki’wz =q; "w2, W2 =W + qiu + q; u, fﬂUz = 0,
Ky =u, e;u=wy, fiu=mws,

1 2l+1 20+1
K

LA
wo, flu = —q; w2,

1"
K" =", e = 0, fiU” -0.

Ku' =u', e;u' = —q

We identify the i-component Yj with a basis element of Wy, 1, as follows:

wo 20 + wy &
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1172
Wo <> u <
u' u' <
o 7
Wg & wy
; A A
Wy < U
/ / 4 -4
u & u' <

The U;-module Wyy1 is decomposed as Wy, = V(2) @ V(0)®3, where

V(2) = Qg)wo ® Qg) (w1 + qiu+ ¢ T u") & Qg)ws,

V(0) = Qg)(u — qiw1) = Q(g) (v + ;" w1) = Qg)u”.

(5.26)
Hence, the crystal basis (L, B) of Woy; is given by
L = Agwo @ Ao (w1 + giu + ¢ T ") @ Aows
(5.27) & Ao (u — qawr) @ Ao (v’ + @2 2wy) © Ao,

B = {0, w1, Wz, u,uw, u" }

with the crystal graph

|
g\
S

— b e b
Wo — W — W2 u
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Example 5.11. In Example 5.10, we have

222

2 313 [3

0101 Z ;;;

cx=nnzn O 21 V22117
= ... 3 | —
Y= AA® DB e @[5 |cVemsUaw,.

1LA041/]0, 2 21343

Ny : 31313

Vd Vi Ve 1/

Zy 2122

0/11/4¢

1ol A

Remark 5.12. Let Y be a proper Young wall in Z(A) with the decomposition
Y = (Yy,Y1,...,Y,) into i-components. For each 0 < k < r, let Vi be the
Usy-module associated with Y}, whose crystal basis is (Lg, By). We identify
Y, with a basis element of V. Then Y}, can also be viewed as a crystal element
in By and hence, ;(Y:) and &;(Yy) are well-defined. On the other hand, as a
part of Y, we defined ;(Y%) (resp. £;(Y%)) to be the number of +’s (resp. —'s)
in the i-signature of Y},. It is easy to verify that these two definitions give the
same values for the i-component Y.

Let Y be a proper Young wall in Z(A) with the decomposition Y = (Yp, 11,
.., Y;) into i-components, and let V; be the U(;-module associated with Y}
(0 < k <r). Recall that Y}, is identified with a basis element of Vj. Set

(528) VWw=WeWe -eV.
We define a Q(q)-linear map Ay : Vy — F(A) by
(5.29) by(YpeY/®---@Y)=Y'=(Y,,Y],....Y]),

where Yy @ Y{ ® - -- ® Y, runs over the basis element of Vy. Then it is easy to
see that fy is injective and Y is contained in Im fy.
We are now ready to prove the relation (5.15).

Lemma 5.13. The linear map Oy is a Uy;)-module homomorphism. In partic-
ular, we have

K;-K !
(6ifi — fiei)Y = ——_ZY

1

? i

Proof. By definition of U;-action on Vy and U,(g)-action on F(A), it is rather
tedious but straightforward to verify that

(5.30) Oy(z-v)=x-0y(v) forallz e Uy and v € Vy.

We will prove only when z = K;. Let v =Y/ @Y/ ®---®Y! € Vy and put
Y'=0y(v) = (¥y,Y!,...,Y]). Then we see from the action of K; on Y, € Vy
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that K;v = glv where | = 3;_,(p:(Y{) — €i(Y})). By Remark 5.12, we have
1=¢;(Y") —&;(Y') = wt(Y")(h;), which implies 8y (K;v) = K;fy (v).
Hence
(eifi — fie)Y =0y ((eifi - fie:)(Yo @Y1 ® - ®@Y,))
(5.31) K- K _K-K'

=0y(—— (YY1 ® - 0Y,)) =

SHS%
q; — 4g; qi — 4q;

O

Example 5.14. Let us illustrate (5.30). Let Y be the proper Young wall in
Example 5.10, and let v = Y, ® Y1 ® Y2 ® Y3 be the element in Vy associated
to the decomposition of Y into 0-component given in Example 5.11 such that
6y (v) =Y. Note that Yy corresponds to vp in V', ¥7 to u” in W3, Y5 to u in
U, and Y3 to wg in W5 . Since fou = fou” =0, we have
fo’U = fo('Uo ® u” Ru R wo)
= (fovo) ® u" ® u® wo + quo ® 1" @ u ® (fowo)

=0 ®u' Quwy+v®u’ Quw; + vy @u’ duw.
Hence, Oy (fov) = foby (v) = foY.

Lemma 5.15. Let Y be a proper Young wall in Z(A). Fori,j € I withi # j,
we have

(5.32) (eifj — fieY =0.

Proof. The proof is quite lengthy and is based on a case-by-case check. We
give a sketch of the verification and leave the details to the reader.
For i € I, we define
adm;(Y) = the set of all (virtually) admissible é-slots in Y,

rmv;(Y) = the set of all (virtually) removable i-blocks in Y.

Consider

efiY = S g g R b)) o),
beadm;(Y)
c€rmv; (Y /b)

i(6;Y /'¢) —Ri(c;
fieY = S OGN (v Aoy b
c€rmv;(Y)
beadm;(Y Sc)

Let O be the type of the i-blocks and let O’ be the type of the j-blocks.
Suppose (O,0') # (IT1,III) and observe that

(5.33)

(5.34) beadm;(Y), cermvi(Y /b)
if and only if ¢ € rmv;(Y), b € adm;(Y 7 ¢).
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In this case, we have (Y v b) M ¢) = (Y / ¢  b). Furthermore,
if (a;|la;) = 0 (equivalently, i-blocks and j-blocks are not adjacent in each
column of Y') or b is located to the left of ¢, then it is clear that
(5.35) Li(b;Y)=Li(b:Y /¢), Ri(gY  b)=RigY),

which implies that the corresponding two summands in (e;f; — fje;)Y are
cancelled out. Therefore, we have only to consider the case when (a;|a;) # 0
and b is located to the right of ¢ and show that

Li(b;Y) —~Ri(c; L;(Y —R:(c;Y

On the other hand, we have the following :
(1) if (aifou) = (ly), ie., s; = s;, then we have

LJ(b,Y) = L](b,Y )+ 1,
Ri(¢;Y v b) = Ri(Y) + 1.
(i) if (aslas) > (ajley), ie., s; = 2s;, then we have
Li(;Y)=L;(b;Y 7¢)+2,
Ri(¢;Y ./ b) = Ri(¢;Y) + 1.
(iii) if (ou]ou) < (ajley), ie., 2s; = s;, then we have
L;(b;Y) = Lj(b;Y )+,
Ri(¢;Y v b) = Ri(¢Y) + 2.

(5.37)

(5.38)

(5.39)

For example, consider (5.37). Let Y = (yx)32, be the proper Young wall
in Example 5.10, and let ¢ = 2 and j = 0 with 85 = 32 = 2. Let b be the
admissible 0-slot in yo and ¢ the removable 2-block in y7. Note that Lo(b;Y) =
1. By removing ¢ from Y, O-block at the top of ys becomes removable and
Lo(b;Y / ¢) = 0. Also, by adding a 0-block at the top of yo, an admissible
2-slot is created at the same column and we have Ra(c;Y  b) = 1 while
Ra(¢;Y) = 0. Hence (5.37) is satisfied. In general, one can check the other
relations in a similar way.

Now, it follows that
(540) SjL]'(b; Y) - SiRi(C;Y ,/ b) = Sij(b; Y /‘ C) - s,-Ri(c; Y),
which proves (5.36).

Now suppose that O = O' = ITI. Note that (o;]as) = (ajle;) and (a;]e;) =
0. For b € adm;(Y) and ¢ € rmv;(Y ./ b), set

Wi_j_j (b, ¢) = qu(b§y)qi—3i(03y/b)((y NV C),
and for ¢ € rmv;(Y) and b € adm;(Y 7 ¢), set
W%—J (b, C) — qf](b,Y/lc)ql—Rl(C,Y)((Y /‘ c) / b)_

First, consider the following cases.
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Case 1.
bl b [+

NI IR oD
o

) S

where [ = 2m (m > 0), b,b' € adm,;(Y) and ¢ € rmv;(Y / b) Nrmv;(Y / b').
In this case, we have

(Y ) /o) = (=¢)((Y v b) o),
Li(t;Y)=L;i(Y) -1, Ri(Y /' V)=Ri(gY /D),
which yields

+ - +
(5.41) Wb, e) = =W (¥, ¢).
Case 2.
b c C b e c
Mo Xd o« F DN
| 1 — | 1 —

where [ = 2m (m > 0), b € adm;(Y 7 ¢)Nadm,;(Y 7 ¢') and ¢, € rmv,(Y).
In this case, we have

(Y ~e) ' b) = (=g)((Y /) b),
LY /~c)=Lj(Y ~c), Ri(aY)=Ri(c;Y)+1,
which yields

(5.42) Wi,_j (b,c) = _Wi,_j (b, C/)
Case 3.
b b ¢ ¢ b b ¢ C
N T

_

I l l

where | = 2m (m > 0),
b€ adm;(Y)Nnadm;(Y Me¢), b €adm;(Y M¢),
and cermv;(Y)Nrmv;(Y /' b), ¢ €rmvi(Y / b).

In this case, we have
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Case 4.

or

where [ = 2m (m > 0),

b€ adm;(Y) Nnadm;(Y Me), b € adm;(Y "¢,

b" € adm;(Y) Nadm; (Y ~c"),

c € rmv;(Y) Nrmvy(Y /' b), ¢’ € tmvy(Y / b),
and d" € rmv(Y) Nrmv, (Y b").

Similarly, we have
+ _ j—
Wi,j<ba C) - I/Vz,](b’ C)a
+ . —
Wb, ') = Wb, ¢),
W{Z’(buvcu) — VV;‘,_j(buac” .

For the other cases, it is easy to verify that (5.34) holds and W;S-(b, c) =
W (b,c). Therefore, (e;f; — fje:)Y = 0, which completes the proof of the
lemma. O

Proof of Theorem 5.5. By Lemma 5.13, Lemma 5.15 and Proposition B.1 in
[13], the U,(g)-action on F(A) satisfies all the relations in (1.4). Therefore,
F(A) becomes a Uy(g)-module in the category Oip. O

Remark 5.16. If g = Ag,l), the Fock space F(A) is equal to the Fock space
constructed by Misra and Miwa [19] where Z(A) is the set of Young diagrams
and Y(A) is the set of n-reduced Young diagrams. In [13], Kashiwara, Miwa,
Petersen and Yung gave a more abstract construction of the Fock space repre-
sentations of quantum affine algebras. More precisely, for a level [ perfect rep-
resentation V' of U, (g), they first defined the q-deformed wedge space N (va)
where V2 denotes the affinization of V. Then they defined the Fock space to
be the inductive limit of ¢-deformed wedge spaces. The set of normally ordered
wedges (defined by the energy function) form a Q(g¢)-basis of the Fock space.
For the level 1 case, the Fock space representation constructed in [13] is iso-
morphic to U,(g)-module F(A) constructed in this paper. Moreover, there is
a bijection between the set of normally ordered wedges and the set of proper
Young walls Z(A) except for the case g = Df_ﬁl. We expect that one can
also construct the higher level Fock space representations of quantum affine
algebras using combinatorics of Young walls.
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6. Crystal basis of F(A)

Let L(A) = @yez(a) AoY. We will show that (L(A), Z(A)) is a crystal basis
of F(A). In particular, the crystal of F(A) is isomorphic to the U,(g)-crystal
Z(A) defined by the abstract Kashiwara operators F; and F; (i € I).

Observe that the pair (L(A), Z(A)) satisfies the first four conditions in Def-
inition 2.1. For the rest three conditions, the main step is to show that the
Kashiwara operators & and f; (i € I) on Z(A) induced by the U,(g)-module ac-
tion on F(A) coincide with the abstract Kashiwara operators F; and F (i € I)
on Z(A) defined in Section 4. The proof of this step relies on the crystal basis
theory for Uy(slz)-modules and the tensor product rule.

Theorem 6.1. The pair (L(A), Z(A)) is a crystal basis of the Fock space rep-
resentation F(A). Moreover, the crystal of F(A) is isomorphic to the U,(g)-
crystal Z(A) given in Section 4.

Proof. We will show that the pair (L(A), Z(A)) satisfies the conditions (v), (vi)
and (vii) in Definition 2.1.

Fix ¢ € I. Let Y be a proper Young wall in Z(A) with the i-component
decomposition (Yo, Y1,...,Y;), and let Vy = V5 ® --- ® V. be the U;-module
constructed in Section 5. By Lemma 5.13, 8y : Vy — F(A) is an injective Uy~
module homomorphism. Since (L, By) is a crystal basis of Vi, (0 < k <71), Vy
has a crystal basis (Ly, By) given by

(6.1) Ly=Ly®---®L,, By=By®---® B,.
Furthermore, 0y satisfies
(6.2) fy(Ly) C L(A), 8y(By) C Z(A),

where Ay : Ly/qLy — L(A)/qL(A) is the injective Q-linear map induced
from Oy .

Let & and f; be the Kashiwara operators induced from the U;)-module
structure on V3 and F(A). Since &; and f, commute with 8y and Y is contained
in @y (Ly), we have &, f;Y € £(A). Hence, the condition (v) is satisfied.

Since & and f; commute with 8y, we also have &Y, f;¥Y € Z(A) U {0}
mod g£(A). Furthermore, if &Y # 0 (resp. f;¥Y # 0) (mod ¢£(A)), then
&fiY =Y (resp. f;&;Y =Y) (mod ¢L(A)), which implies that the condition
(vi) and (vii) are satisfied. Hence, (L(A), Z(A)) is a crystal basis of F(A).

It remains to show that
(6.3) &Y =EY, fY =FEY (mod qL(A)).

It follows from Remark 5.12 that the i-signature of ¥y ® --- ® ¥,. (see Section
2) is equal to the i-signature of ¥ (see Section 4). Then by the tensor product
rule and the definitions of E; and F;, we have

E(é,(YO ®--® Yr)) = E’iYa
Y.

(6.4) _— ~
Oy(i(Yo®--0Y,)) =F;
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Therefore, we obtain (6.3) and conclude that the crystal of F(A) is isomorphic
to the U, (g)-crystal Z(A). O

Using Theorem 6.1, one can decompose the Fock space F(A) into a direct
sum of irreducible highest weight modules over U,(g) by locating the maximal
vectors in the crystal Z(A).

Corollary 6.2.

B rso V(A —m&)®Pm) if g2 D)

6.5 F(A) =
65 & {eamzovm—ma)@f’(m) ifg=DY,,

where p(m) denotes the number of partitions of m.

Proof. We will show that the weight of each maximal vector in Z(A) is of the
form A —md (resp. A —2mJd) if g # Dﬁl (resp. g = Dﬁl) for some m > 0,
and that there exists a bijection between the set of partitions of m (m > 0)
and the set of maximal vectors in Z(A) with weight A — mé (resp. A —2md)
if g # Dfll (resp. g = Dfﬁl). Let Y = (y&)52, € Z(A) be a maximal vector,
ie., &Y = E;Y = 0 for all i € I. Suppose that Y is the ground-state wall
Ya. Since wt(Ya) = A and Z(A)s = { Y4 }, the multiplicity of V(A) in F(A)
is 1. From now on, we assume that ¥ # Y. Let [ be the maximum such that
|yi| # 0. Suppose that Y' = (yz)p2,,, € Z(A;) for some j € I. Denote by O
the type of the j-block. Let A be the volume of the §-column.

Casel. O0=1

This case occurs only when g = Asll). Since ;41 is j-admissible and Y is
a maximal vector, there is a removable j-block on top of y;, and hence y; is
obtained by adding some §-columns to the ground-state wall, or |y;| = mA for
some my > 1. If | # 0, let I’ be the maximum such that I' <[ and |yi| > |y].
Note that yy 41 is j'-admissible for some j' € I. Since Y is a maximal vector,
there exists an j'-block on top of y;, which implies that |yr| = mp A for some
myp > 1. By repeating the above argument column by column from left to
right, we conclude that for 0 < k <1, |yx| = miA for some my > 1. Moreover,
(mg,mq,...,my) forms a partition and wt(¥Y) = A — (22:0 mg)d.

-7

7

i vy
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Case 2. O =11

We see from the pattern for Z(A) that A = A;. By the maximality of Y,
the j-signature of y;41 is + and the j-signature of y; is — or —+. Hence y;
is obtained by adding some é-columns to the ground-state wall. If [ # 0, let
" be the maximum such that I’ < ! and |yr| > |yi]. Also by the maximality
of Y, the j-signature of y; is — or —+, which means that y; is obtained
by adding some d-columns to the ground state wall. Repeating the above
argument from left to right, we conclude that for 0 < k& < I, the total volume
of the blocks added on the kth column is mzA for some m; > 1. Hence,
(mo,...,m;) forms a partition, and wt(Y) = A — (ZL:O my)d if g # D'512—+)-1’
wt(Y) = A —2(Xh_oma)é if g = D).

Yi yy

Case 3. O=1II

Let j be the color of the type III block, with which the j-block forms a
unit cube. By the maximality of Y, we observe that the y;41 is j-admissible
and y; is j-removable but not j’-removable. Hence y, is obtained by adding
some d-columns to the ground-state wall. If I # 0, let I’ be the maximum such
that I’ < I and |yy| > |yi]- If yrry1 is j-admissible, then by the maximality
of Y, yy is j-removable but not j'-removable. On the other hand, if yy 41
is j’-admissible, then by the maximality of Y, yp is j'-removable but not j-
removable. As in Case 1 and 2, by repeating the above argument, we conclude
that for 0 < k < I, the total volume of the blocks added on the kth column
is miA for some my > 1. Hence, (mg,ms,...,m;) forms a partition and

wi(Y) = A = (Zjg mu)d.

(7)

Y yir
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Conversely, for a given partition (my)ze, of a nonnegative integer m, there
exists a unique proper Young wall Y = (yx)72 4 in Z(A) such that yi is obtained
by adding mj many -columns to the kth column of the ground state wall Yy
(hence the total volume of the blocks added to the kth column is mgA). Tt is
easy to check that Y is a maximal vector with wt(Y) = A—mé (resp. A —2md)

if g # Dﬂl (resp. g = Dﬁl). U

7. Generalized Lascoux-Leclerc-Thibon algorithm

In this section, we generalize Lascoux-Leclerc-Thibon algorithm ([14]) to
obtain an effective algorithm for constructing the global basis G(A) of the basic
representation V(A) of U,(g). Observe that V(A) is realized as the U,(g)-
submodule of F(A) generated by the ground state wall Y. Also recall that
the crystal B(A) of V(A) is isomorphic to the U,(g)-crystal Y(A) consisting of
reduced proper Young walls. Thus our goal is the following: for each reduced
proper Young wall Y € Y(A), we would like to give an algorithm for computing
the corresponding global basis element G(Y') as a linear combination of proper
Young walls in Z(A).

For this purpose, we first investigate the action of divided powers fi(r) (1 €
I,y > 1) on the proper Young walls. Let Y be a proper Young wall in Z(A)
(not necessarily reduced), and write

(7.1) FOy = > Qv,z(9)Z,
ZEZ(A)
wt(Z)=wt(Y)—ra;

where Qy,z(q) € Q(g). For each Z = (z4)72, € Z(A) with Qy,z(q) # 0, there
exists a unique sequence of proper Young walls ¥ = Yy, Y3,...,Y,. = Z such
that

(i) Arp1Yee1 = Yz o bryy for some Apyy € Z[g,g71] and a (virtually)

admissible i-slot bg41 of Yy,
(i) br+1 is placed on top of by or to the right of by.

Example 7.1. Let g = Af), A = Ag, i =0, and consider

0 Je—ba
0_t*=—b3
1 [0 7
— 1
2 ——
— 2
1 b )
[1] ! 1
Y = 0JoJoTlo and Z = 0
11111101 oOlojoljolo
1|2
2 (2222
22222
1|11z |1
010101010 pjrjrj1)1
o lojofolo [oloJoJojo
ololololo
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Then, we have a sequence of proper Young walls ¥ = ¥4,Y1,Y5,Ys, Yy = Z,
where

_ — (0]

B ! | 1

[ 2 | 2 | 2

[ 1 ] 1 1

0 010 15

Y, = JoJoJo o Yo =[0JoJo oo Ys =119 105

11 |1f1]1 11111 11101011

21222 |2 22222 alal2 22

11111 1|11 ]1]1 a1 [
0]oJoJo o 0]lolo]o0lo

0 1010 ]0]0

cfjofoiolo] piojojoio] , stoto 510

and A\ = 1, Ao = q_l(l - qs), Az = 1, M= [2] = (q +q_1).

Let Qv;,v,,.(q) be the coefficient of Y3, in the expression of f;Y%.
Define

r—1

(7'2) Q;,Z(q) = H QYk»Yk+1(q) € Z[q,q_l].
k=0

Note that each b, (1 < k < 7) can be viewed as an i-block (not necessarily
removable) in Z. When by’s are of type II, we define

J1 = { k| bk lies beneath by },
J2 = { k| there exists an i-block (# bg—1) beneath by in Z },
(7.3)  Js = { k|there exists no i-block on top of and beneath by in Z },
S ={k € Jy|br and bp—; lie in the same i-component of Z },
T={keJs|lk+1€S5}.
Set | = |Jy}, m = |J2| and n = |J3|. For each k& € S, let u = ¢A\x. Note that
2l+m +n =r. Then we have

Lemma 7.2. LetY be a proper Young wall in Z(A), and suppose that Qy,z(q)#
0 for some Z € Z(A) with wt(Z) = wt(Y') — ra;. Then we have

(7.4) Qy (@) Qi’/,z(q)qi(Z) ( ) if the i-blocks are of type 1 or 111,
. v,z\4q) = a(l,m,n . )
Q?/,z(q)[z—]ql—m if the i-blocks are of type II,

where a(l,m,n) = 4(5) + () + (3) + 2l(m + n) + mn.
In particular, we have Qy,z(q) € Z[g,q7 .

Example 7.3. In Example 7.1, we have J; = {4}, J» = {2} and J3 = {1}.
Also, we have S = {2}, T = {1}. Since Q3 ,(¢) = ¢~ (1 — ¢*)[2], w2 = gho =
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(1 —¢®) and o(1,1,1) = 5, it follows that
¢ 4
Qvz(@) =Qyz(D X G~ =¢ -
v B )
Hence, the coefficient of Z in f{*)Y is ¢*.

Proof of Lemma 7.2. Case 1. Suppose that the i-blocks are of type I or IIL
We will use induction on r. For r = 1, it is clear. Suppose that (7.4) holds
for r — 1. Let Z; be the proper Young wall in Z(A) (1 < k < r) such that
by is also a (virtually) admissible i-slot of Zy and Zi " br, = Z (up to scalar
multiplication). By definition of Qv z(g), we have

MiQv.z(@) = Y _ Qv,2,(0)Qz,.2(9)-
k=1

Note that
sz’z(q) = Q%k,Z(Q)a
QC}’J’,Z;C (Q)Qozkz(q) = Q(;/,Z(Q)qf(r_k),

By induction hypothesis, we have

MiQvz(@) = Y 03 2 (@)@%, 2@l )

k=1

=Y Qg )
k=1

=3 @@ T 2 0y (@)gP .
k=1

This completes the induction argument.

Case 2. Suppose that i-blocks are of type 1I. We will also use induction
on r. For r = 1, it is clear. Suppose that (7.4) holds for r — 1 (r > 2). Set
J=JiUJyUJs. For k € J, let Z; be the unique proper Young wall in Z(A)
such that b is also an admissible i-slot of Zy and Zy " b = AxZ (Ax was
already given in the definition of by). We have

2] if ke Jp,
(7.5) M =Kq 11— (=¢g>)%T) ifkeJrand k> 2,
1 otherwise

for some I > 0, and py, = (1 — (—¢*)"* 1) for k € §. As in Case 1, we have

(7.6) r1:Qv,2(0) = 3 Qv.2.(0Q2,.2(0),

keJ
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and

sz,Z(Q) = Q%k,z( )s
le ( ) 2(r—k) (1—(=¢*)'s+1) ifkeT,

(1—(—gq2)lk+17T)
QY. 4 (@)* Y otherwise.

Q?/,Zk (Q)Qozk,z( )= {

By induction hypothesis, we have

[r]iQy,z(q) = Qv z(g)x

a(l-1,m,n+1)4+2(r—k) I,m—1,n)+2(r—k)

of
q q
+
(kgl A wes e kEJZz:\S 2" [Twes iw
o(l,m,n—1)4+2(r—k) o(
+ Z q + g ;
k€Js\T Hk’GS By keS [2] Hk'es\{k} 127y
o‘(l,m,n—l)+2(r—k) (1 . (—q2)lk+1)
+ Z 211 (1 = (—g2)le+1+1)
kET K eS\{k+1} Mk q
On the other hand,
q
_|..
,;g [2]f Hk'eS\{k} Hi ,; [2]* Hk'eS\{k+1} prr (1 = (—g?)lerrtl)
_ 1
[2]1 Hk’es k! kel

I,m—1,n)+2(r—k)

o(l,m—1,n)+2(r—k) qo(l,m,n—1)+2(r—k) (1 _ (_q2)lk+1)

(qa(l,m—l,n)+2(r—k—1) (1 _ (_q2)lk+1 +1)

+ qa(l,m,n—1)+2(r—k)(1 _ (_q2)lk+1)>

1
_ o(l,m—1,n)+2(r—k—1) a(l,m,n—1)+2(r—k)
= q +4q .
e 2 )
Since
ol-1,mn+1)=0c(l,mmn)—r+2
U(l’m - 11”) = U(l:m:n - ]-) = U(lvm’n) —-r+ 17
we have
[r]Qv,z(q)
o(l,m,n)
at q —r+1+2(r—k+1) —r4+142(r—k)
=Qvz Do — ( gt +) 4
B e (2, 2
o(l,m,n) T a(l,m,n)
— o q ~(r—1)+2(r—k) | _ Mo q
=Qv:Oonm—— g = Qv z( Do — b
OB Mo \ & PR s me

which completes our induction argument.
Finally, since [2]' [T;c ux divides Q% ;(q), we have Qv z(q) € Zlg,q7"]. O
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Let Y be a proper Young wall in Z(A) and let b be a block in Y. Suppose
that b lies in the kth column of Y. The coordinate of b is defined to be (k,1)
where [ is the number of unit cubes lying below b. Note that two different
blocks of type II or III have the same coordinate if they are parts of a unit
cube. Also, each coordinate corresponds to a unit cube in a given pattern.

Example 7.4. The block b in the following figure has the coordinate (1,4).

Let ¢ = (k,1) (k,1 > 0) be a coordinate of a block in the pattern for Z(A).
We define the ladder at ¢ to be the finite sequence of coordinates as follows;

c=(k1),(k—1,1+A"), (k=2,1+2A",...,(0,1+ kA",

where A" = A—1 (resp. A)ifg = AD (resp. g # Ag,l)) (This is a generalization
of the ladder for Young diagrams. See [5}).

Example 7.5. If g = Bél) and A = Ag, then A = 4. There are two ladders
in the following figure. The left one is the ladder at (7,0), and the right one is
the ladder at (3,1).

b
f=)

O
=

‘ )
=

=

|

O

=l o eofeo| o
= one |eofeo| o '—‘
o

(=)
b
Sl vo Jeofes] v

N
w}aww =l o feofeo] ro
=)

o)
Omwww‘ O,wwww
=

=l oo Josles] o
o] o
1o |oofes] to
Ol v fesfes] b

o,
L=
ol
<
[
-

Let Y be a reduced proper Young wall in Y(A) and let y be the left-most
column in Y with |y;| # 0. Take a block b lying at the top of y; and let ¢ be its
color. (If the b is of type III and there is another block of type IIT on top of yi,
we take the block at the front.) Suppose that the coordinate of b is ¢ = (k,1)
and let L. be the ladder at ¢. We denote by Y N L. the i-blocks in ¥ whose
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coordinates are in L.. (In fact, L, is the left-most ladder that has a nontrivial
intersection with ¥.) We define Y to be the proper Young wall that is obtained
from Y by removing all the i-blocks in Y N L.. Then it is easy to see that Y
is also reduced. That is, we remove all the i-blocks along the left-most ladder
to obtain another reduced proper Young wall. This process will play a crucial
role in constructing the global basis G(A) of V(A).

Example 7.6. (a} If g = Agz) and

_ _
2 2
|33 3|3
t2)212 212
o/ = 0 0
Y = WA thenY = 100
2|22 2(2]2
3|33 3133
12)2 212 2122
/o) AP A pL
2
(b) If g = A% and
7\
D N ) 010
1{1]1 (RN
20212 2122
R 11z
—_ Y gjolg
Y = cyolotol then ¥ = o 15
ST 1{1f1]:
21222 2]2(2])2
N P RER RS
o~ clolol0
£0Y0 101010 -
| NP 0 O X 8101019

{c)Ifg= Bél) and

(
—
<
=

e ool &0
WS EES

LR EY
S| v [esfeo} o

then Y =[g

h<
Il

—
(=)
—
<
—-

Ol vo Jesfeo] o §
Sl ove Jeofes} no
S o [eofeo] xo
S| v feofeo] vo
e e} o
Sl oo Jeofeo) no

)
o
(=)
-
ot
o
s
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Proposition 7.7. Let Y be a reduced proper Young wall in Y(A). Suppose

that wt(Y') = wt(Y') + ra; for some i € I and r > 1. Then we have

f%=v+ Y @y 02
ZeZ(A)
wt(Z)=wt(Y)
Z#£Y

That is, we have nyy(q) =1.

Proof. By definition of Y, there exists a unique sequence of proper Young walls
Yo=Y,...,.Y, =Y such that for 1 <k <r

(i) Yr = Y1 " bi (up to scalar multiplication) for some admissible i-slot
by of Yi_1,
(ii) there exists no admissible ¢-slot located to the left of by.

In other words, {b; |1 < k < r} are added to Y from left to right and from
bottom to top with no admissible i-slot to the left of each by.
Suppose that b’s are of type I or III. Then it is easy to see that

Q%’y(q) = H QYk,Yk+1 (q) = q:(;),
k=0

which implies that Q y(g) = 1 by Lemma 7.2.

Suppose that by’s are of type II. Let Jq, Jo, J3 be the sets given in (7.3). Set
I =|Ji|, m = |Js], and n = | J3|. By definition of Y, m < 1 and if m = 1, then
Jy = {1} and b; is placed on the column which is part of the ground-state
wall. Also, (ii) implies that n < 1 and that if n = 1, then J3 = {r }. Note that
S =T = (. Thus we have

1 1)~ (5)~(3)-2A(mm)=mn

Q% v (@) = [2:g; ;

which implies that Qv y(¢) = 1 by Lemma 7.2 . O

Let Y be a proper Young wall in Z(A). Let L be a ladder and suppose
that there exists at least one i-block in Y N L for some ¢ € I except the block
in the ground state wall. Then we rearrange these i-blocks from the bottom
along L, that is, we slide these i-blocks downwards along L as far as possible.
Repeat this procedure ladder by ladder until no block can be moved downward
along a ladder. Then we obtain another proper Young wall Y&, which we
call the reduced form of Y. By definition, Y® is a reduced proper Young wall.
Moreover, we have |Y #|>]Y| and the equality holds if and only if Y is reduced.
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Example 7.8.

2
2]
2
2
KA
1 -
2 3
T 2)2
o A
3] 11,1
02 222
%7 o an
pod = 31313
Y 2 R 222
P i I BYA
4313 o] 71| /0| 1
222
1/10/1/]0
0,1,/ 1

where a dotted line indicates a ladder containing 3-blocks in yq.

Lemma 7.9 (cf. [5]). Let Y be a reduced proper Young wall in Y(A) and
let Z be a proper Young wall in Z(A) such that |Y|> |Z®|. Suppose that

wt(Y) = wt(Y) + roy for some i € I andr > 1. Then, for each W € Z(A)

appearing in the ezpression of fi(r)Z, we have
(@) Y] wr.
(b) If |Y| = |W]|, then |Y| = |Z| and Z is a reduced proper Young wall.
() If|Y|=|W| andY = Z, then Y = W.

Proof. (a) Let L be the left-most ladder which has a nontrivial intersection
with Y. Denote by vy, Yp—1,---,Yp—s (s > 0) the first s+ 1 columns in ¥ which
meet L, and denote by 7,,7,_1,---,¥,—s (§ > 0) the corresponding columns
in Y. Since Z# = (2§)¢°, is reduced, we have

(7.7) Wyl > |2t for0<t<s.

Since W = (wi)32, (and hence W# = (wf')$2 ) is given by adding r many
i-blocks on Z, we also have

(7.8) lyp—2} > |wf_t| for0 <t <s.

Therefore, if s’ < s, then

(7.9) D lypel 2 lwgl,
t=0 t=0

and if s < ¢’ < p, then

(7.10) Z [Yp—t| = Z [Up—tl +7 > Z |Z;I}—t| +r2> Z Iw;}}—t|~
t=0 t=0 t=0 t=0

Hence we conclude |Y| > |WE|.
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(b) Suppose that |Y| = |W|. Since |7,| > |2p| and w, is obtained by adding
some i-blocks on zp, we have ¥, = 2, and y, = w,. Suppose that for 0 <u <
t <s,

(711) yp—u - zp—uy yp—u = wP—U'

Note that
t41 t+1 t+1

(7.12) D el 2D 2R =Y 2l
u==0 u=0 u=0

By our hypothesis, we have |7, _, ;| > |#p-¢—1]- Since |y,—+—1| = |wp—s—1] and
wp—¢—1 18 obtained by adding some i-blocks on z,_;_1, we have Up—t—1 = Zp—t—1
and yp, ¢ 1 = wp—¢—1. By induction, ¥,_, = zp-u and yp—u = wp—, for

0 < u < s. Since all the i-blocks are added on (F,)52, , and (wk)2,_,,
we have (7,525 = (y)izo * and (wi)f—g™' = (2x)jg ', which implies

lye| = |x] = |wk| = |2x| for all 0 < k < p— s — 1. Hence, |Y| = |Z| = |ZF| and
Z is reduced.
(c) follows directly from the proof of (b) O

Let ¥ be a reduced proper Young wall in Y(A). There exists a unique
sequence of reduced proper Young walls {Y3}1_, such that Yo = Y, ¥; = Yo,
o Yy =V, ..., Yy = Yy_, = Y,. Suppose that Y3 = Yj_; is obtained by
removing 7y many ¢x-blocks from Y;_; (1 <k < N). We define

(7.13) AY) = 170 £ e V()

Example 7.10. If g = Af), A =Ap and

, then we have A(Y) = f$¥ f2 @ i@ ¢B) ¢ £ 11 70V,

Slo] = o |~ {olof = wl»—ﬂlol

o] = || = oo

(7.14) A= Y Avs@)7,

where Ay, z(q) € Q(g). Then, the coefficients Ay z(q) satisfy the following
properties.
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Proposition 7.11. Let Y be a reduced proper Young wall in Y(A). Then, for
a proper Young wall Z € Z(A), we have

(a) Ay,z(q) € Zlg, a7,

(b) Ay z(q) = 0 unless |Y| > |Z| and wt(Y) = wt(Z),

(c) if Ay,z(q) 0 and [Y| = |Z|, then Y = Z and Ay,y(q) = 1.
Proof. We will use induction on [, the number of blocks in Y which have been
added to Y. If I = 1, it is clear. Suppose that [ > 1, and (a)-(c) hold for
U<l TEAY) = f - £y, for some N > 1, then we have

(7.15)
AY) =AY = Y Ay lofiz

Y| 2%

= Z A?,z(‘l)( Z Qzw(@W by Lemma 7.9 (a)

[Y|>|ZR| [Y|>(WE|

- Z ( Z A?,z(Q)QZ,W(Q)) W.

[Y[BIWE| \|Y|>|Z7|

By induction hypothesis and Lemma 7.2, we have

(7.16) Ayw(@) = Y. Ay z(@Qzw(9) € Zla, a7,
¥ || 27|

and Ay w(q) = 0 unless |Y| > [WE| and wt(Y) = wt(W).

If Ay w(q) # 0 and |Y| = |W|, then Lemma 7.9 (b) implies that |Z| = |Y|
for Ay 2(q) # 0. Hence, Z = Y by induction hypothesis. Finally, we have
Y = W by Lemma 7.9 (c), and hence Ay,y(q) = Ay v(9)@v y(g) = 1 by
Proposition 7.7, which completes the induction argument. ]

For proper Young walls Y = (yx)32, and Z = (2x)3,, we define |Y| > |Z|
if there exists & > 0 such that |yx| > |2:] and |y| = |z| for all I > k. Thus
we have a total ordering on the set of partitions. Note that |Y| &> |Z] implies
Y| > |Z|. Now we define a total ordering > on the set Z(A) of proper Young
walls as follows. First, we fix an arbitrary total ordering > on the set of proper
Young walls with the same associated partition. Then we define

(717) Y > Z if and only if
QY| >|Z] or ) Y|=|Z|andY > Z .
For example, if |Y| > |Z| and |Y| # |Z|, then we have Y > Z.

Let Y be a reduced proper Young wall in Y{A). By Proposition 7.11, we
may write

AV)=Y + ) Ayz(9)Z.
Y>Z
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It follows that the set A(A) = {A(Y)|Y € Y(A)} is linearly independent
over Q(g). Since dim V(A)x = |V(A)al for A < A, we conclude that A(A) is a
Q(g)-basis of V(A).

Let G(A) = {G{Y)|Y € Y(A) } be the global basis of V(A)4. Then for each
reduced proper Young wall ¥ € YV(A), we may write

(7.18) GY)= > Gyz(@)Z € V(A)aNL(A)
ZeZ(A)

for some Gy,z(q) € Ag. Since G(A) is an A-basis of V(A)s, G(Y) can be
expressed as an A-linear combination of the vectors fi(fl) e fi(;” )YA. By
Lemma 7.2, it is easy to see that Gy z(q) € Qlg,¢™]. Moreover, since G(Y') =
Y mod gL(A), the coefficients Gy, z(g) satisfy the following properties:

(i) Gy.z(q) € Qlg),

(i) Gy,z(g) € qQlg] unless Y = Z,

(iii) Gy,y(g) = L.

On the other hand, since G(A) and A(A) are both (¥(g)-basis of V(A), there

exists the transition matrix H = (Hy,w(q))y,wey(a) such that

(7.19) GY)= Y Hyw@AW),
WeY(A)

where the indices are decreasing with respect to the total ordering > on Y(A).
Since G(Y) = G(Y) and A(W) = A(W), we have Hyw(q) = Hy.w(qg™?) for
all YW € Y(A). The following proposition provides the last ingredients for
our algorithm.

Proposition 7.12. (a) The coefficients Hy w(q) satisfy the following proper-
ties:
(i) Hyw(q) € Qlg,g7'].
(ii}) Hyw{g) = 0 unless Y > W and wt(Y) = wt(W).
(i) Hy,y(q) = 1.
(b) The set A(A) is an A-basis of V(A),.

Proof. (a) Consider the following square matrices indexed by Y(A)
(7.20) G=(Gvz(q), A= (Awz(d),

where the indices are given by the total ordering > in a decreasing manner.
Then by (7.19), G = HA. Since 4 is an upper triangular matrix whose diagonal
entries are all 1, we conclude that A is invertible and the entries of A~} are in
Qlg,g71]. It follows that H = GA~! and Hy,w(q) € Qlg,¢ !] for all YW €
Y{(A). This proves (i).

Next, let W be the reduced proper Young wall in Y(A) that is maximal
with respect to the total ordering > on Y(A) among the ones with Hy w(q) #
0. By the maximality of W and Proposition 7.11 (b), we have Gy w(g) =
Hy,w(9)Aw,w(q) = Hy,w(g). Since Gy,w (¢) € Qlq] and Gy,w(q) = Hy,w(q)=
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Hyw(g™!) = Gyw(g™"), Gy,w(g) must be a constant. It follows that Y = W
and Hy,y(q) = Gy,y(q) = 1. This proves (ii) and (iii).

(b) By (i) and {7.19), every element of G(A) can be expressed as an A-linear
combination of the elements in A(A). Hence, A(A) is an A-basis of V(A),y. O

Observe that, by Proposition 7.12 (a), H is invertible and H~! is also an
upper triangular matrix whose diagonal entries are all 1. Hence for each reduced
proper Young wall Y € Y(A)x (A < A), A(Y) can be expressed uniquely as

(7.21) A =G+ Y. Hyz(9)G(2)
2P

for some Hy ;(q) € Qlg, ¢~ "] such that Hy ,(q) = Hy, 5(¢7").

Now, we are ready to give a generalized version of Lascoux-Leclerc-Thibon
algorithm for constructing the global basis element G(Y') (cf. [14]).

Fix a weight A < A of V(A), and we list all the reduced proper Young walls
in Y(A), using the total ordering >:

Yi>Ye>--->Y.

We will construct the basis element G(Y},) (1 < k <) in a recursive way.
First, by (7.21), we have G(Y;) = A(Y;) because Y} is the minimal ele-

ment. Suppose that we have computed G(Yj41),...,G(Y}). Then, by (7.21),

there exist uniquely determined coefficients v,(q) € Q[g,q¢7*] (k < s < 1) with

7s(q) = 7s(g™") such that
(7.22) GYy) = A(Ye) — 1r+1(9)G (Yit1)
~V42(@)G Yit2) = - = ()G (V7).
Since G(Y3) = ¥ mod ¢L(A) and v:(q) = vs(g7"), 7s(g) (k < s < 1) are
determined recursively as follows:
(G.1) if Ay, viyi(9) = o, aid’, then veqa(q) = 301 a—i(g* +¢7) + ao.
(G.2) if the coefficient of Y, (s > k+1) in A(Yi) = S0 44, % (0)G(Y}) is
given by Z;,:_T aigt, then v5(g) =3 7_, a—s(¢° + ¢ %) + ao.
Using this procedure, one can construct G(Yz) (k= 1,...,0).

To sumimarize, we obtain the generalized Lascoux-Leclerc- Thibon algorithm:

Theorem 7.13. Let Y be a reduced proper Young wall in Y(A). Then the
corresponding global basis element G(Y') can be constructed recursively using
the algorithm given in {7.22), (G.1) and (G.2). Moreover G(Y') has the form

(7.23) GY)=Y+ ) Gvrz02
ZEE(A)
I¥|>z]

where Gy, z(q) € qZ[qg} for Y # Z.
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By the construction of G(Y') and Proposition 7.11 (b), we have
(7.24) Gy.z(g) =0 unless |Y|>|ZF.
Hence, we can also apply the modified algorithm introduced in [18] as follows.
Let Y € Y(A) be a reduced proper Young wall and suppose that G(Y)
and G(Y') (Y > Y') have been constructed. Set C(Y) = fi(r}G’(Y) where
wt(Y) = wt(Y) — ra;. Note that C(Y) = C(Y). By Lemma 7.9 (a) and
Proposition 7.7, we have
(7.25) CY)=Y+ 3 Crvz(@)Z

Yie|Z#8]
for some Cy z(q) € Q[g,q~!]. Hence, for each Y’ € Y(A), there exists uniquely
determined coefficients (y,y(q¢) € Qlg,qg7'] with (v,y/(q) = {y,y (¢™1) such
that
(7.26) G(Y) = =3 el

Y>Y?

Since G(Y) = Y (mod ¢L(A)) and (yy(g) = vy (g71), the coefficients

Ly y(q) are determined recursively as follows:

(G'.1) if Y' is the maximal one such that ¥ > Y’ and Cy,y:(q) = Y.\, aiq’,
then (y, vi{q) = Z:_1 a~l(q. +¢7") + ao.

(G'.2) if the coefficient of Y’ in C(Y) - ZY>Z>Y' Cy,z(9)G(Z) is given by
Zz:——r alq 3 then CY.Y/( ) - Z;: (q +4q 2) + ag-

To summarize, we obtain the modified generalized LLT algorithm:

Corollary 7.14. Let Y be a reduced proper Young wall in Y(A). Then the
corresponding global basis element G(Y') can be constructed recursively using
the algorithm given in (7.26), (G".1) and (G'.2).

In the following, we illustrate this result with several examples.

Example 7.15. Suppose that g = Af). Note that gy = ¢, ¢1 = ¢°, and

4
a2 =q .
{a) Let ¥ be one of the following reduced proper Young walls:

sy 5]
(o] 0 :
1 11 ﬂ
| -
2 2|2 2
1t 1|1 11
0 {0 010

9l01i@
016 016 [eTodo] .

Then Y is the smallest one among the reduced proper Young walls with the
same weight with respect to the total ordering. Therefore, we have A(Y) =
G(Y) by (7.21) and



1194 SEOK-JIN KANG AND JAE-HOON KWON
1]
(6] (0] 0]
1 1 L0 |
B B :
2
G( ) = Wi hbhiloYa = T + @[]
01D 0lo 1
910 910 0
-
[G ] (0]
1|1 11
21]2 2 2|2
G( T )= flfzfifo( VfifofifoYa = Tt q*
010 g 10
0 10 010
5] 0]
1 0 | | 0 ]
1 1
3 ,
G( 21) = foflf(g )fifafifo¥a = 2
1 1 1 1
[0 Ta [016 10
{folojo 10iolo
{b) Observe that
[C]
4]
1|1
A( 212 )
R
0 1] 1]
031010
3
= fifoh f2 11 £ fufafrfoYa
- o o
) L_gj o]
i 0
1 '
= 2121+ ¢ 2|2 + (1+4qY 212
11111
FH RN 1|11 11711
01010 agl1o 10 folotlo
[ O O )

i = [ = Jole] =] =]
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EBEEEERE

= -
1_1

1]

1
1)
1

2121)

1
kU
0

2
1
2
1
g
g
1

[7)
1
2
1
1]
[d]

- F
.+»

Lgi0

[¢]
1
2
1

o
(3]

0

1

2

Lt

0
EnEE

<)

R[5

~ | ™|~ [of _1_2W1TTM1~2 ~ [°F m_wO - ol
: b
)
o PR EIEEE = -
N & CEEEE }
+ o rrmﬂ. RS RS mﬁlu. -
£ < S ok
3+ = T
o S .M.nl:.v. _
= i i s 5
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- _
5] ! !
0] 0] 0]
1]t = o
1 111

T ) .
= 2121+ 42 202 + ¢ 212

11141

T 15 1§11 1141
010190 01919 [DioT0
040 |0 LO B0 10

Example 7.16. Suppose that g = B?(,l). Note that ¢ = ¢1 = g2 = ¢* and

g3 = (.

(a) We have

01/1 01/1
21412 212
G( EET) = A( Eh)
212)2 21242
0/1L/10, 0/11/10,
11/01 /1 11/01/1

£ P 8 1o 18 1o £ 1282 FafoYa,

Z] 5]
[ 2 2
01 /1 1 ) 5
212 212 1 o1
313 9 33 4 212 . 2|2
=BEEE] + ¢ BlEE] + ¢ 31zl + ¢ =131 ,
21{212 2(21(2 313 33
0/11/10 /] L/ 0, 212 2|2
374174 100 A0 5
1,01 o1
31313 313
G(|22]2])=A(|2]2|2])
2 E%D % 4D
1oL 10l A
= fafofofsfafifsfafoYa,
= 2
3]3 ]38 3 g La—
— 4 2
=22zl o+ 91 -¢") [GTaTa] + al+4¢%) -
Z4)) 2|2
oA 170
1,014 N L
1L 6L
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(b) Observe that

A(

NE] b feofeo] o

NS v feofeo] v
~

= fofofo £V £ 17 Fo fa £52) fo foYne

1 0 0
1 1
2|2
2 212
i 2 33 1 4 313
= 313
+ q s+ (1+4¢%) 213
21212 2022 2|2
0/] 1A 0
73, 0 & [§) 110 [) 1 0/
| Al 4 Y LA
Ve
]
2 2
ER ™ —
= 2 =
2 0 —
oL/1
oA 2
1 212 0
2 9 2 313 4 Z
+ q = t R t 4 2
3] 212 3]
2 |2 4V 2
0 5% D - 22
| A1 /0
44
On the other hand,
— I
2 2
0 )
1 1
2|2 2 ]2
313 — 313
G( 313 )= A( 313 )
2|2 212
0, 1/ 0, 0] 14]0,
Al 0 414

= fo o PP 1P 1P fo 252 FafoYa,
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0
—
2 2
— 3] —
2 Ex 2 -
Y 2 oA B
5 2
212 1 212 01
— 3 13 2 2 2 313 4
33+q T+q33+q 2
2|2 3 2|2 _g_
0/]1.7]0 2|2 1/10
1,/ /1 51
%D 212
1oLt /[0
o[ 1
Hence,
0 0 2
1 1 0
1
2|2 2|2 5 1 2
3 |3 313
G( alal) = A( als1) - G( 2 121)
212 |2 2122 5 12
0/11.7]0 %D
1011 1]/0l /1 %% B
1,/061
. B [2]
1 0? 0
1 1
212 2 212
o 2 3 [3 4 3 |3
= 313
+ g 33+q 3 |3
21212 2|2 2|2
0/ 1,70
1,011 0/] .71 0 0/11/7]0
1,/ 1 /0|1

8. Appendix

In this section, we list the patterns for building the walls which are given in
[7).
(8) AW (n 2 1),

OnYAi:
01
n|o0
n—1| n
ol1ry12 (3] i |+l
nio|1t¢t2 —1] 3
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(b) AS)_| (n>3),

On YAo : On YA1

212 |2]|2 2 2 2 2

1 /10 /11 /10 o /11 /1o /|1
ol/1/0/1 i /o /110
2 (222 2 (222
n n n n n n n n
212122 2121212

1 0 1 0 4 1 0 1

(c) DY (n > 4),

On Yy, : On Ya,
2121212 2121212
1 0 1 0 0 1 0 1
0l /1 0 1 1 /0l /1 0
21222 2121212
n—2|n—2n—2jn—2 n—2|n—2[n—2{n—2
n /In—~1jn /in-~1 n /ln—1|n /in—1
n—1l/nln~11/n n—1l/nn—-1/n
n—2|n—2n-2|n-2 n—2|n—2[n—-2{n~2
2121212 21212} 2
1 40 A1 40 0 A1 0 41
- -
OnYa,_, : On Ya,
n—2|n—2|n—2|n—2 n=-2In-2n-2n-2
n Sin—1jn /ln—1 n—1jn /in—1|n
n—1l/n|n— i3 nn—11/n [n—1
n—2|n—2|n—2|n—2 n-—-2n—2n—2n—2
2121212 212 (2|2
1 /10 /11 /10 1 0 1./10
ol /11 /ol/1 oL/ 1l/ol/1
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On Yy, :
1 111 1
o0JoJolo
0j0]J0joO
1 1 1 1
n|ln|n|n
1 1 1 1
2
(e) Dn+1 (n Z 2)7
On YAo . On YAn
1 1 1 1 n—l|n—1|n—1fn—1
0 0 0 0 n|ln|niln
0 0 0 0 n|n|n|n
1 1 1 1 n—1|n—1|n—1|n~1

n—1[n—1[n—1jn—1 1 1 1 1
k3 n n n 0 0 [s] 0
ki L n n 0 [1] [1] [1]

n—1{n—1[n~1|n~1 1 1 1 1
1 1 1 1 n—1|n—1|n—1|n—1

On YAO : On YAI:
212(|2]2 2t12)121]2
1/10 /11 /10 o /11 /10 /11
ol /11 /0l/1 1 /0 /11/0
212(2]2 212]21]2
[n—1lin—1n—1n—1 [n—1n—1m—1in—1
ninl[nin nlnlnln
nln|nfin nl|lnin]|n
[n—1in—im—1n—1 [n—1n—1m—1fn—1
2121212 212 (|2]2
0 /11 A10 A]1
i 3 Vet g
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On Yy, :
in—1pr—1pt—1p-1
k£3 " k3
n k23 n n
—1ipn—1 1in—1|
2l2l2]2
1 0 1 0
0 1 4] 1
2 2122
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