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ABSTRACT. Let ¢ be an entire self map on C and let ¥ be an entire function on C. A

weighted composition operator induced by ¢ with weight 1) is given by Cy 4. In this paper

we investigate under what conditions the weighted composition operators C', 4 on the Fock
le?

space over C induced by ¢ with weight of the form k.(¢) = e!©9~"2 is normaloid and

essentially normaloid.

1. Introduction

In this paper, we work with a class of weighted composition operators act-
ing on the Fock space 2, also known as the Bargmann space over the com-
plex plane C. This is the Hilbert space of analytical functions f(¢) such that
171% = L . 1£(0)[2e71¢°dA(¢), ¢ € C, where dA is the usual Lebesque measure
on C. In 2, the inner product is defined as (f,g) = = [. f(g‘)me_KFdA(Q.
It is known that F2 is a reproducing kernel Hilbert space (RKHS) with kernel
K,¢ = elSm for ), ¢ € C. Let ky = ngﬁ be the normalization of K,,.

A composition operator Cy on F? is defined as Cy f = f o, where ¢ is an analytical
self map on C. For an analytical function v, the weighted composition operator on
F? is defined as Cy 4 f = 1. fo¢. It is clear that when ¢ = 1, Cy 4 is reduced to C.
The classical Fock space has been studied by many authors; see, for example [1], [6]
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and [11]. For more on background on composition operators, one recommend the
excellent books [2] and [9]. The book [12] is an excellent reference on the Fock space.

For a bounded operator A, we denote

e o(A) the spectrum of A.
e 0.(A) the essential spectrum of A.
o 7,(A) =sup{|A|, A € 0(A)}, the spectral radius of o(A).
e 1, (A)}, the essential spectral radius of o.(A4).
e W(A) the numerical range of A.
rw(A) = sup{|\|, A € W(A)}, the numerical radius of W(A).
e ||A]l. = inf{||A — B|| : Bis compact}, the essential norm.
o 7o(A) = limp o (A7)
o o, (A) = limy oo (| A7)
Also we have the following definitions for an operator A

e Normaloid if ||A]| = rs(A)
e Essentially Normaloid if | A|le = 74, (A)
e Spectraloid if r,(A4) = 1y (A)

It is also well known that every hyponormal operator is normaloid and an op-
erator is normaloid iff ||A"|] = ||A||™ for every integer n > 1. By [[5], Theorem
1.3-2], if 7, (A) = || A||, then r,(A) = ||A]|]. We will also use the fact that unitarily
equivalent bounded operators have the same numerical range and norm.

In [10], the author gave an exact characterization for when weighted composition
operators on the classical Hardy space H? are normaloid. Inspired by the article
[10], we will investigate under which conditions a class of weighted composition
operators on the Fock space F2 is normaloid and under which it is essentially nor-
maloid.

2. Preliminary Results

In this section, we list well-known results on weighted composition operators on
F2.

Theorem 2.1.([1], Theorem 1) Suppose ¢ : C — C is an analytic function.
(a) If Cy is bounded on F? then ¢(¢) = p¢ + v, where p,v € C, |pu| < 1 and if
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|| =1 then v = 0.
(b) If Cy is compact on F? then ¢(¢) = u¢ + v, where |u| < 1.

By ([1], Theorem 2), the converse of the above theorem is also true.

Theorem 2.2.([[6], Theorem 2.2]) Suppose 1, ¢ be analytic functions on C such
that 1 is not identically zero. Then Cy 4 is bounded iff ¢ belongs to F2, ¢(¢) =

$(0) + A with |A| < 1 and M (1), ¢) = sup{ |29 =11 ¢ € C} < 0.

Theorem 2.3.([[6], Theorem 2.3]) Let v, ¢ be entire functions such that v is not
identically zero. Then the operator Cy 4 is a normal bounded operator on F2 iff
one of the following two cases occurs:

a. ¢(¢) = A + v with |[A| =1 and ¢ = 9(0)Kx,,. In this case, Cy 4 is a constant
multiple of a unitary operator.

b. ¢(¢) = A{ +v with |A| < 1 and ¢ = ¢(0) K., where ¢ = v3=3. In this case, Cy 4
is unitarily equvalent to 1(0)C)¢.

Theorem 2.4.([[6], Theorem 2.4]) If 1, ¢ be analytic functions on C such that ¢ is
not identically zero. Then Cy 4 is compact on F2 if and only if ¢(¢) = u¢ + v with

|u| < 1 and lim¢| o0 [ih|2el¢ QP =IC* = 0.

In the following result, the author calculated norm of the composition operators
acting on the Fock space over C™

Theorem 2.5.([[1], Theorem 4]) Suppose that ¢ is a self-map on C™ such that
#(¢) = B¢+ A, where either ||X|| < 1 and A is arbitrary, or ||2]] = 1 and (n,A) =0
whenever |Xn| = |n|. Then on F2(C"), we have ||Cy| = ei([wol’=[Swol*+IAP” here
wp is any solution to (I — X*¥)w = X*A.

In one variable setting, when ¢ is of the form ¢(¢) = u¢ + v, the above result is

1 vl

reduced to ||Cy| = e} T where |#| < 1. In [3], the author extended the norm
calculation into non-Hilbert Fock space FP(C™).

3. Main Results

In this section, we characterize a class of bounded normaloid weighted composi-
tion operators induced by the self map ¢ of the form ¢(¢) = u¢ + v where p,v € C
such that |u| < 1 and the weight function 1 of the form 1(¢) = k.¢ for some ¢ € C.
By Theorem 2.1, |p| = 1, implies v = 0. This implies ¢(¢{) = u¢ which induces a
normal weighted composition operator on 32. Moreover every normal operator is
normaloid. Therefore we consider the case |u| < 1.

The following two lemmas are easy to derive.

Lemma 3.1. Let 11,19, ...10, be analytic functions on C and ¢1, ¢2, ..., be an
analytic self-map on C. If Cy, .1, Cys.g9, ---Cip, 6,5 are bounded operators on F2,

then Cy, .6, Cu,g5--Con s = Oy (12061)....(1%n06n_10...061),6n0¢n _10...061 -
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Lemma 3.2. Let 9, ¢ be holomorphic function on C and Cy 4 is a bounded oper-

ator on J2, then for ¢ € C, then C;, ;K¢ = ¥(C) Ky (¢

In the following result we derive criterion for a composition operator on F2 to be
normaloid.

Theorem 3.3. Suppose ¢ is a holomorphic on C such that ¢(¢) = u¢ + v, |u| < 1.
Then Cy is normaloid on F2 if and only if ¢(0) = 0.

Proof. First, assume that ¢(0) = 0. This implies ¢(¢) = u¢. Thus Cy is an diagonal
operator which is normal. Hence Cy is normaloid on F2.
For the other direction, suppose Cy is normaloid. (i.e) r,(Cy) = [|Cy|l. By ([1],

1_v?
Theorem 4), we have ||Cy| = 2T
In ([4], Proposition 3.3), it is given that U(§¢) = {pu™neZ;} for |u| < 1. This
1_lv]
gives r,(Cy) = 1. Therefore, we have e? 0=Iu® = 1. This implies v = 0. Therefore
»(0) = 0. O

Next, we find the criterion for the composition operator on the Fock space to be
essesntially normaloid.

Theorem 3.4. Let ¢ be a holomorphic function on C such that ¢(¢) = u¢ + v with
|| < 1. Then Cy is essentially normaloid.

Proof. Consider the case |u| = 1, then by ([1], Theorem 1), we have v = 0. Therefore
#(¢) = u¢. By ([8], Theorem 2.2), we have ||Cy|le = ||Cys|| = 1. In this case, we have
Ck = Cye = Cpn¢ with || = 1. This implies [|[Cyrlle = [|Cyrlle = 1. Therefore
7. (Cy) = limg 00 ||C’£||e% = 1. Hence Cj is essentially normaloid.

On the other hand, if || # 1, then |p| < 1. This implies Cy is compact ([1], Theorem
2) This implies ||O¢He = 0. N[OI‘GOVGI‘7 Og = O¢k = CﬂijLy(#kflJﬁukfererl).
Since |*| < 1, we have Cyr is compact. Therefore HCf;He = 0. Thus r, (Cy) =

1
limg_y o0 HC§|\§ = 0. Hence Cy is essentially normaloid. O

In the next theorem, we will derive conditions by which the weighted composition
operator on the Fock space 32 induced by the symbol ¢ and the weight function of
the form ¢(¢) = k.(¢) for some ¢ € C.

Forp 6)([:7 denote ¢, (¢) = (—p, P,(¢) = ¢podog_, and Vp(¢) = k_p(Yod_p)(kpo
pod_p).

Lemma 3.5.([11], Proportion 2.3) For p € C, ¢,(¢) = ¢ — p, Ck, ¢, is unitary.

Theorem 3.6. Let ¢ be an analytic function on C such that ¢(¢) = u¢ + v with
lu| < 1 and ¢(p) = p for some p € C and (¢) = k.(¢) for ¢ € C. Then the bounded
weighted composition operator Cy ¢4 is normaloid.
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Proof. Consider
(3.1) Ch 6 Cu.0Chy.0, = Ck_ . (00p).(kpogos_ ). dpodod_p
=Cy,.s,

Hence Cy 4 and Cy, ¢, are unitarily equivalent operators on the Fock space F2,

Since ¢(p) = p, we have

(3-2) @p(C) = pr o¢go ¢—p(C)

=pC+pp+v—p
=puC+o(p) —p
= pg

(3.3) Uy(Q) = k—p(¥ 0 d_p)(kp 0P 0 6)(C)
=k_p(O) (P (d-p(0)) (kp(d(P-5(C)))
= e PY(( + p)kp(d(¢ + 1))

o8 (Cpye o () +r)p- 2
=€ 2 e 2 e 2

— o~ PP L () +0)P Il

From Cj 4 Ko = U,(0)Ko, we have |[(Ca,u, — ¥p(0)Koll = |(Cu,w, —
U, (0))* Kol = 0. Since Ko = 1, we get (Cy, 0, — VY,(0))Ko = 0. This implies
Q) = Wy(0) 2

Thus from (1.3), we have ¥,,(¢) = ¥, (0) = eP*~ S5 +IpI* (k= D+ which is a constant.

c 2 i
Denote s = ePe— 5+l (s=1)+17

Therefore, Cy, 0, = sCy¢ with |u| <1

In ([7], Proposition 2.2), author derived the numerical range of composition opera-
tor Cy,¢c where |u| < 1 acting on Hardy space H? is a closed polygonal region, whose
vertices form a finite subset {u"™|n > 1}. It is clear from the proof that this result
is also true for the Fock space F2.

It follows from ([7], Proposition 2.2), the numerical range of Cy, s, = sC)¢ is
{su"n = 0}.
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Thus Tw(Cq;p@p) = |S|
On the other hand, by ([1], Theorem 4), ||Cy,.,| = [[sCpcll = |s]

Thus 74,(Cy,.s,) = [|Cy,.e,|. By [[5], Theorem 1.3-2], Cy, ¢, is normaloid. Using
the fact that unitarily equivalent bounded operators have same numerical range and
norm, we get the desired result. O

Theorem 3.7. Let ¢ be an analytic function on C such that ¢(¢) = u¢ + v with
|¢| < 1and ¢(p) = p for some p € C and ¢(¢) = k.(¢) for ¢ € C. Then the bounded

weighted composition operator Cy 4 is essentially normaloid.

Proof. Since || < 1, by ([6], Theorem 2.4), Cy 4 is compact. This implies |Cy 4|l =
0. On the other hand, we know that Cy ¢ is unitarily equivalent to Cy, ¢,, where
W, (¢) = ¥,(0), which is a constant. Since |u| < 1, Cy, v, = ¥,(0).Cy¢ is compact.
Therefore HC\PP,% le = 0. Since unitarily equivalent operators have same essential
spectrum, we have r,, (Cy,¢) = 7, (Cy,,2,). Also HCl\f/p,q»p le = H\IJZ,(O)k.C\I,;; |l =0.
Thus 74, (Cy,¢) = 0. Hence Cy 4 is essentially normaloid. O

Corollary 3.8. Let ¢ be an analytic self map on C such that ¢(¢) = pu¢ + v
with |p| < 1 and ¥(¢) = k.(¢). Then Cy is normaloid implies Cy, 4 is essentially
normaloid.

Proof. By Theorem 3.3, we have v = 0. This implies Cy g4 = Cy . By
([6], Theorem 2.4), Cy ,¢ is a compact operator on the Fock space F2. There-
fore [|Cy uclle = 0. On the other hand, by Lemma 3.1, we have CJZM< =
. k . . k .

Cop(0)- () (e (n2Q))-.. (o) ¢ With |p| < 1 and [u] < 1 implies Cyj ¢ is com-
pact.

Thus 74, (Cy¢) = limkﬁoo(HC’l’Zy#CHe)% = 0. Hence Cy4 is essentially nor-
maloid. O

Theorem 3.9. Let ¥ be a holomorphic function on C and ¢ be a analytic self map
on C such that ¢(¢) = pu¢ + v with |u| < 1. If Cy 4 be a bounded operator on the
Fock space F2 such that Cy is normaloid then Cy 4 is normaloid.

Proof. By Theorem 3.3, we have ¢(0) = 0. This implies ¢(¢) = u(.

From Lemma 3.2, Cj Ko = ¥(0)Kg0) = %(0)Ko and [[(Cy,e — 1(0))Kol| =
[(Cy,6 —1(0))" Kol|, we have (Cy,y —1(0)) Ko = 0.

Since Ky = 1, we have ¢({) = 1(0), which is a constant and denote ¥ (0) = u.
Thus Cy,¢ = uC),¢ with |p| < 1.

Following arguments as in Theorem 3.6, we get ||Cy ol = [[uCuc|| = |u| and
Te(Cy,¢) = re(uCy¢) = |ul. Hence Cy 4 is normaloid. O

Theorem 3.10. Let ¢ be an analytical function on C such that ¢(¢) = u¢ + v with
lu| < 1 and ¢¥(¢) = kc(¢). Suppose ¢(p) = p then Cy 4 is normaloid if and only if
Cy,4 is spectraloid.
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Proof. It is known that every normaloid is spectraloid. On the other hand, assume
that Cy ¢ is spectraloid. by definition, 7o (Cy.¢) = 74 (Cy,¢). Since Cy 4 is unitarily
equivalent to Cy, ¢, where W), ®, defined as in Theorem 3.6., by ([7], Proposition
11) and using the fact that unitarily equivalent operators have same numerical
range, we get r,(Cy ) = |¥p(0)]. Also from the proof of Theorem 3.6, we have
U, (¢) = ¥,(0), a constant. By ([1], Theorem 4), we have ||Cy 4|l = [|Cy,.3,| =
|, (0)]. Thus ry(Cy,¢) = ||Cy,ell- Hence Cy 4 is normaloid. O

In the next theorem, we will find the conditions for which the Ci}) » 1s normaloid.
Moreover, this result can be extended to any power of natural number. In order to
prove the next result we need following proposition.

Proposition 3.11. Let ¢ be holomorphic on C such that ¢({) = ul + v with
|u| < 1 and ¥(¢) = k.(¢). Then Cimb is unitarily equivalent to Cy; ¢, Where

c p(p?— T v —lc)?
() = pw2C+ pPp+ pv + v —p and (¢) = eC@(u+1)+p(p” —1))+e(up+v+p)—|c|

Proof. By ([11], Proposition 2.2), C}, 4, is unitary and its inverse is Cy_, 4_,.

Taking W (¢) = k_p({)-1h 0 ¢—_p(C) Y 0 P o d_p(C).kpododog_p(¢) and ¥(C) =
ppopopop_p(¢), and with the fact that reproducing kernels are dense in the Fock
space F2, we have

(3.4) Cr_ - C,6C,6Cky 0, Ko () = Cwr vy Koo (C)

This implies C'y, ¢ is unitarily equivalent to Cy; o/ Where ®,(¢) = W2+ pPp+ pv+
v —pand W (¢) = eSEADHP(* —1)42(uptotp)—lel? 0

Theorem 3.12. Let ¢ be an analytical function on C such that ¢(¢{) = u¢ + v with
lul <1 and ¢(¢) = ke(¢). For some p € C, if ¢*(p) = p then C}, , is normaloid.

Proof. By Proposition 3.11, we have Cy ¢ is unitarily equivaent to C‘%@;. Taking
¢?(p) = p for some p € C, we get

(3.5) P,(¢) =dpododod_,(C)
= ¢p(¢°(C+p)
= ¢p(p*C+ pPp + v +v)
=2+l +v—p
=12+ ¢*(p) —p
= pi%¢

(3.6) V() = k—p(Q)-¥ 0 dp(Q)-tp 0P 0 b 4(C)kpodododp(C)

— S @A) AP = 1)) +e(up+r+p)—|el®
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From Cy, o Ko = V,(0)Key ) and [[(Cuye, — VL0) Kol = [[(Cuye, -
\I/;(O))*K()”, we have (Cq;/py@;) - \IJ;)KO = C\y/F@/pKO - \IJ;KO = 0. Therefore
U,(¢) = ¥,(0) which is a constant. Denote ¥ (¢) = W, (0) = s. Thus Cy ¢4 is
unitarily equivalent to sCe, where ®},(¢) = w2 with |p| < 1.

By ([7], Proposition 2.2) and following argument as in Theorem 3.6., we have
rw(Cwr e = |s| and by ([1], Theorem 4), we get |[Cy; o || = [s|. Thus Cys o/
is normaloid. Since norm and numerical range of unitarily equivalent operators are
equal, we get the desire result. O

Corollary 3.13. Let ¢ be an analytical function on C such that ¢(¢) = u¢ + v
with |p| < 1 and ¥(¢) = kc(¢). For some wwwp € C and any natural number n, if
@™ (p) = p then (4, » 18 normaloid.

Proof. Result can be proved by following similar argument as in Theorem 3.12. [
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