• Title/Summary/Keyword: Flux-Lock Type Superconducting Fault Current Limiter (SFCL)

Search Result 73, Processing Time 0.029 seconds

Analysis on Fault Current limiting and Recovery Characteristics of Flux-Lock Type Superconducting Fault Current Limiter According to Increase of Applied Voltage (전압증가에 따른 자속구속형 초전도 한류기의 전류제한 및 회복특성 분석)

  • Oh, Kum-Gon;Han, Tae-Hee;Cho, Yong-Sun;Cho, Hyo-Sang;Choi, Myoung-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.107-112
    • /
    • 2007
  • The flux-lock type SFCL consists of transformer with primary and secondary windings connected to a superconducting element in serial. It can be divided into the subtractive and the additive polarity windings according to the winding direction. It could change the fault current limiting characteristics according to the inductance ratio between the coil 1 and coil 2. We investigated the voltage-current characteristics of the flux-lock type SFCL according to the increment of applied voltage. When the applied voltage of the SFCL with the subtractive and the additive polarity windings was increased a initial limiting current ($I_{ini}$) and the quench time of the superconducting element were increased. The recovery time of the superconducting element was increased by increment of applied voltage. Therefore, it was confirmed that recovery characteristics in the flux-lock type SFCL were largely dependent on the consumed energy of a superconducting element because of increment of the consumption power into the superconducting element.

Analysis for Variation of Limiting Current at Initial Fault Time in Flux-Lock Type SFCL (자속구속형 고온초전도 전류제한기의 사고초기 제한 전류변화 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Gang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.418-420
    • /
    • 2003
  • The fault current limiting characteristics at the initial fault time for flux-lock type high-Tc superconducting fault current limiter(SFCL) were investigated. The amplitude of initial fault current of the flux-lock type SFCL was dependent on the inductance ratio of coil 1 and 2. After fault current limiting mode was analyzed, we compared the calculated value with the experimental one for the initial fault current. The effect of initial fault current due to the inductance ratio of coil 1 and 2 on fault current limiting characteristics was discussed.

  • PDF

The Fault Current Limiting Characteristics According to Increase of Voltage in a Flux-Lock Type High-Tc Superconducting Fault Current Limiter (전압 증가에 따른 자속구속형 고온 초전도 전류제한기의 사고전류 제한 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper, we analyzed the current limiting characteristics according to increase of source voltage in the flux-lock type high-Tc superconducting fault current limiter (SFCL). The flux-lock type SFCL consisted of two coils, which were wound in parallel each other through an iron core, and high-Tc superconducting (HTSC) element connected with coil 2 in series. The flux-lock type SFCL has the characteristics better in comparison with the resistive type SFCL because the fault current in the flux-lock type SFCL can be divided into two coils by the inductance ratio of coil 1 and coil 2. The fault current limiting operation of the flux-lock type SFCL can be different due to winding direction of the two coils. The winding method where the decrease of linkage flux between two coils in the accident happens is called the subtractive polarity winding and the winding method in case of the increase of linkage flux is called the additive polarity winding. The fault current limiting experiments according to the source voltage were performed for these two winding methods. Through the comparison and the analysis of the experimental data, we confirmed that the quench time was shorter, irrespective of the winding direction as the source voltage increased and that the fault current and the HTSC's resistance increased as the amplitude of the source voltage increased. The additive polarity winding made the fast quench time and the lower resistance of HTSC element in comparison with the subtractive polarity winding. The fault current of the subtractive polarity winding was larger than that of the additive polarity winding. In conclusion, we found that the additive polarity winding reduced the burden of SFCL because the quench time was shorter and the fault current was smaller than those of the subtractive polarity winding.

  • PDF

Operating Characteristics of Capacity Increase in a Flux-Lock Type Superconducting Fault Current Limiter (자속구속형 초전도 전류제한기의 용량증대를 위한 동작특성)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Han, Tae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.200-202
    • /
    • 2006
  • We investigated the operating characteristics of a flux-lock type superconducting fault current limiters according to the number of the serial connection each the superconducting element at the additive polarity winding of a transformer. This SFCL consists of two coils wound in parallel on the same iron core, and the secondary coil is connected to the elements in series. Operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. It turns ratio between the primary and the secondary coils is 63:21. The analysis of voltage, current, and resistance in serial connection each element was performed to increase the applied voltage of flux-lock type SFCL. When the applied voltage was 200/$\sqrt{3}[V_{rms}]$ with three elements connected in seres, the peak value of the line current increased up to 26,24[A]. On the other hands, resistive SFCL increased up to 36.35[A], under the same conditions. This enabled the flux-lock type SFCL to be easy to increase the capacity of power system.

  • PDF

Saturation Characteristic of Iron Core Dependent on Fault Angle in a Flux-Lock Type SFCL (자속구속형 초전도 사고전류제한기의 사고각에 따른 철심의 포화특성)

  • Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.29-34
    • /
    • 2007
  • The fault current limiting characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to fault angles were investigated. From the electrical equivalent circuit with the magnetization branch, the inner magnetic flux of this SFCL due to fault angles was induced and its effect on the limited fault current was analyzed. From the fault current limiting experiments, the exciting current, which described the saturation of the iron core, was calculated and its dependence on the fault angle was analyzed. Before the fault happened, the exciting current did not happen, that it kept zero value. However, after the fault happened, the exciting current flowed and, the exciting current in case of the additive polarity winding showed higher value than for the case of the subtractive polarity winding. The analysis results were compared with the experimental ones, and experimental results agreed with the analysis ones.

Characteristics according to the spot at the beginning of the fault current (개선된 자속구속형 전류제한기의 사고 시점에 따른 사고전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Lee, Dong-Hyeok;Han, Sang-Chul;Lee, Jeong-Phil;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.189-189
    • /
    • 2010
  • The Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics through the spot at the beginning of the fault current in the Improved flux-lock type SFCL. The experiment results that the fault current limiting characteristics was difference according to the point of a fault current started. Through the analysis, it was shown that shorter the time of a phase transition.

  • PDF

Analysis on Fault Current Limiting Characteristics Dependent on Air-Gap in a Flux-Lock Type SFCL with parallel connection of two coils (병렬연결된 두 코일을 가진 자속구속형 초전도 전류제한기의 공극유무에 따른 전류제한 특성 분석)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • Air-gap was introduced to suppress the saturation of the iron core comprising the flux-lock type superconducting fault current limiter (SFCL) with parallel connection of two coils. However, the air-gap makes the impedance of this SFCL decreased and can result in unusefulness of the SFCL. To analyze the current limiting characteristics of the SFCL with the air-gap, the experimental circuit for short-circuit test was constructed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the merit and the demerit of the flux-lock type SFCL with the air-gap were discussed.

Analysis of the Initial Fault Current Limiting Point of the SFCLs (고온초전도 전류제한기의 초기사고전류 제한시점 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Yong-Jin;Kim, Min-Ju;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.292-292
    • /
    • 2008
  • The superconducting fault current limiter(SFCL) can be used to limit fault current level in electrical transmission line and power system. Up to now, there are several kinds of SFCL that have proposed and it is expects that they will be applied to appropriated position considering their own properties; initial fault current limiting instant and the current limiting characteristics. In this paper, we investigated the initial fault current limiting instant and the amplitude of initial fault current in the resistive type, the flux-lock type, the flux-coupling type and the transformer type SFCL. Experiment results show that the initial fault current limiting instant and the amplitude of initial fault current of the SFCLs are dependant on the ratio of inductance of primary and secondary coils.

  • PDF