• Title/Summary/Keyword: Fluorescent nanotube

Search Result 8, Processing Time 0.055 seconds

Fluorescent Magnetic Silica Nanotubes with High Photostability Prepared by the Conventional Reverse Micro-Emulsion Method

  • Zhang, Yuhai;Son, Sang Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4165-4168
    • /
    • 2012
  • Magnetic fluorescent silica nanotubes were fabricated using reverse micro-emulsions coupled with conventional sol-gel methods. Anodic aluminum oxide templates were used to separate spatially the magnetic and the fluorescent moieties on individual nanotubes and so prevent quenching of the fluorescence. C18 and fluorescent layers were deposited sequentially on silica. Magnetism was then obtained by the introduction of pre-made magnetic nanoparticles inside the nanotubes. The photo- and chemical stabilities of nanotubes were demonstrated through dye release and photobleaching tests. The produced nanotubes did not show fluorescence quenching upon the addition of the nanoparticles, an advantage over conventional spherical fluorescent magnetic nanoparticles. High photostability of nanotubes, magnetism and biocompatiblily make them potentially useful in bioanalysis.

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

LCD contrast ratio enhancement method using Carbon Nanotube Back Light Unit and Local Dimming (CNT-BLU Local Dimming 구동을 이용한 LCD Contrast 향상 방법)

  • Min, K.W.;Chung, D.S.;Song, B.G.;Kim, S.L.;Kang, H.S.;Baik, C.W.;Jeong, T.W.;Kim, J.W.;Jin, Y.W.;Cho, J.D.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.971-972
    • /
    • 2006
  • We have demonstrated Carbon Nanotube Back Light Unit (CNT-BLU) which has a triode structure. Local dimming scheme was introduced to the BLU driving system. With this driving method, contrast ratio enhanced 20 times higher than that of conventional Cold Cathode Fluorescent Lamp (CCFL) BLU.

  • PDF

Field Emission-Back Light Unit Fabricated Using Carbon Nanotube Emitter

  • Kim, H.S.;Lee, J.W.;Lee, S.K.;Lee, C.S.;Jung, K.W.;Lim, J.H.;Moon, J.W.;Hwang, M.I.;Kim, I.H.;Kim, Y.H.;Lee, B.G.;Choi, Y.C.;Seon, H.R.;Lee, S.J.;Park, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.277-280
    • /
    • 2007
  • Field emission-back light unit (FE-BLU) was fabricated using carbon nanotube (CNT) emitter. Local dimming and local brightening techniques were achieved, which results in very high contrast ratio. In addition, the motion blur phenomenon, one of the serious problems of liquid crystal display (LCD) with cold cathode fluorescent lamp (CCFL)-BLU, was removed from LCD-TV by using FE-BLU.

  • PDF

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.