• Title/Summary/Keyword: Fluid field

Search Result 2,250, Processing Time 0.028 seconds

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

Analysis of the Magnetic Fluid Seals considering the Surface Configuration (자성유체 형상변화를 고려한 밀봉시스템의 해석)

  • Kim, Dong-Hun;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.945-947
    • /
    • 1993
  • This paper presents the numerical algorithm that can obtain the surface configuration of the magnetic fluid seals. The magnetic field is computed by nonlinear finite element method considering the saturation of magnetic fluid and pole piece. The surface equilibrium condition in ferrohydrodynamics are used in algorithm. The influence of the surface configuration on the sealed pressure due to the magnetic, centrifugal and gravitational forces is analyzed and compared with other experimental results.

  • PDF

Experimental Study on the Friction Torque Characteristics of Magnetic Fluid Seals for High Vacuum System (고진공용 자성유체시일이 마찰 토오크 특성에 관한 실험적 연구)

  • 김청균;나윤환;김한식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.145-152
    • /
    • 1996
  • This paper deals with an experimental study on the f~iction torque characteristics of magnctic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the fi'iction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model II is 1.73 ~ 2.56, 2.0 ~ 2.89, 2.0 - 3.25 times larger than those of Model I under the atmospheric pressure, vacuum pressure(10$^{-4}$ and 10$^{-6}$ torr), respectively.

  • PDF

Experimental Study on the Performance Characteristics of Magnetic Fluid Seals for a High Vacuum System (고진공 자성유체시일의 성능 특성에 관한 실험적 연구)

  • 김청균;나윤환
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 1997
  • This paper deals with an experimental study on the friction torque characteristics of magnetic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the friction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model-II is 1.73~2.56, 2.0~2.89, 2.0~3.25 times higher than those of Model-I under the atmospheric pressure, vacuum pressure ($10^{-4} and 10^{-6}$ torr), respectively.

Vibration Control of Engine Mount Utilizing Smart Materials (지능재료를 이용한 엔진 마운트의 진동제어)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.297-300
    • /
    • 2005
  • This paper presents vibration control of an engine mount for a passenger vehicle utilizing ER fluid and piezoelectric actuator. The proposed engine mount can be isolated the vibration of wide frequency range with many types of amplitude. The main function of ER fluid is to attenuate vibration for low frequency with large amplitude, while the piezoelectric actuator is activated in hish frequency range with small amplitude. A mathematical model of the engine mount is derived using Hydraulic model and mechanical model. After formulating the governing equation of motion, then field-dependent dynamic stiffness of the engine mount is evaluated for various engine speed and excitation amplitude conditions. Then robust controller is designed to attenuate vibration of wide range frequency component. Computer simulation is undertaken in order to evaluate the vibration control performance such as transmissibility magnitude in frequency domains.

  • PDF

A Study of the Micor Mechanical System by Using the Magnetic Fluid (자성유체를 개입한 Micro Mechanical System에 관한 연구)

  • Kim, Dong-Wook;Kim, Nam-Gyun;Kim, Bu-Gil;Yuhta, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.147-153
    • /
    • 1993
  • In this paper, we studied about the micro pressure transmission system using fluid. For the investigation of feasibility of microhydraulic system, the hydraulic characteristics were examined by using the capillary tube system and the micro cylinder system that consists of a rod and a micro capillary tube. A new hydraulic micro actuator using magnetic fluid and an external magnetic field was also investigated. The results showed that our microhydraulic system has the possibility of power transmission in arbitrary directions.

  • PDF

Wakes of two inline cylinders at a low Reynolds number

  • Zafar, Farhan;Alam, Md. Mahbub;Muhammad, Zaka;Islam, Md.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The effect of vortex impingement on the fluid dynamics around a cylinder submerged in the wake of another of different diameters is numerically investigated at a Reynolds number Re = 200. While the diameter (D) of the downstream cylinder is fixed, impinging vortices are produced from the upstream cylinder diameter (d) varied as d/D = 0.24, 0.4, 0.6, 0.8 and 1.0, with a spacing ratio L=5.5d, where L is the distance between the center of the upstream cylinder to the front stagnation point of the downstream cylinder. Two-dimensional simulations are carried out using the finite volume method. Fluid forces acting on the two cylinders are correlated with impinging vortices, vortex shedding, and wake structure. Different facets of wake formation, wake structure, and flow separation and their connections to fluid forces are discussed.

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Development of Semi-active Damper by Magneto-Rheological Fluid (자기 유변 유체를 이용한 반능동 감쇠기의 개발)

  • 정병보;권순우;김상화;박영진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • Dampers have been used to dissipate energy in mechanical systems. There are several types of dampers such as passive, active, and semi-active damper. Semi-active dampers have higher performance than passive ones and require less power to operate than active ones. Their damping characteristics can be changed properly for varying conditions. In this paper, we investigated the semi-active damper using Magneto-Rheological fluid. Magneto-Rheological fluid, which is one of controllable fluids, changes its damping and rheological characteristics from Newtonian fluid to Bingham fluid as the magnetic field is applied. It has several advantages such as high yield strength, low viscosity, robustness to impurities and wide temperature range of stability. If we designe a semi-active damper by using this material, we can not only design a simply structured damper but also expect rapid response. In this study, we propose several types of semi-active dampers which are designed and manufactured using Magneto-Rheological fluid and some problems encountered during their applications.

  • PDF