• Title/Summary/Keyword: Flow Stability

검색결과 1,969건 처리시간 0.028초

선회유동을 이용한 펠릿연소기의 화염안정화 연구 (A Study on The Flame Stability of Pellet Combustor Using Swirling Flow)

  • 이도형;윤봉석;왕진위
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.

A Study on the Debris Flow Hazard Mapping Method using SINMAP and FLO-2D

  • Kim, Tae Yun;Yun, Hong Sic;Kwon, Jung Hwan
    • 대한공간정보학회지
    • /
    • 제24권2호
    • /
    • pp.15-24
    • /
    • 2016
  • This study conducted an evaluation of the extent of debris flow damage using SINMAP, which is slope stability analysis software based on the infinite slope stability method, and FLO-2D, a hydraulic debris flow analysis program. Mt. Majeok located in Chuncheon city in the Gangwon province was selected as the study area to compare the study results with an actual 2011 case. The stability of the slope was evaluated using a DEM of $1{\times}1m$ resolution based on the LiDAR survey method, and the initiation points of the debris flow were estimated by analyzing the overlaps with the drainage network, based on watershed analysis. In addition, the study used measured data from the actual case in the simulation instead of existing empirical equations to obtain simulation results with high reliability. The simulation results for the impact of the debris flow showed a 2.2-29.6% difference from the measured data. The results suggest that the extent of damage can be effectively estimated if the parameter setting for the models and the debris flow initiation point estimation are based on measured data. It is expected that the evaluation method of this study can be used in the future as a useful hazard mapping technique among GIS-based risk mapping techniques.

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

전압 및 과도안정도를 고려한 최적조류계산 알고리즘 개발에 관한 연구 (A Study on Development of Optimal Power Flow Calculation Algorithm Considering Voltage and Transient Stability)

  • 김용하;이범;최상규;조성린;정현성;오석현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.39-42
    • /
    • 2005
  • This paper presents a optimal power flow calculation algorithm considering voltage and transient stability In this method, voltage stability margin and transient stability constraints is incorporated into a optimal power flow calculation formulation to guarantee adequate voltage and transient security levels in power system. The proposed method is applied to IEEE-24 Reliability Test System and the results shows the effectiveness of the method.

  • PDF

비선형 PSE를 이용한 압축성 경계층의 안정성 해석 (STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE)

  • ;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

레이저 점 용접의 키홀 발생과 안정성에 대한 해석 (Analysis of Keyhole Formation and Stability in Laser Spot Welding)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.

AC/DC 계통의 전압안정도 해석 (Voltage Stability Analysis of AC/DC Systems)

  • 남해곤;김용학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1169
    • /
    • 2007
  • In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influence of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating cantilever pipe are derived by using extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the rotating angular velocity of a pipe. Also, the critical flow velocity and stability maps of the rotating pipe system for the variation each parameter are obtained.

지반의 투수성에 따른 제체 침투류의 변화 (Variation of Seepage Line through Embankments by Permeability of Layer)

  • 신진환;이봉직
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.109-115
    • /
    • 1996
  • The movement of water through a river embankment and its influenced upon the stability of the slope of the embankment are described. The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of water level. The variation of seepage line in the embankment model by a fluctuation of water level is discussed. The experimental models were construction with slopes of 1 : 1.5, 1 : 2.0, 1 : 2.5 and the flow velocity was turned from 60cm/sec~90cm/sec. Based on the experimental study, the following conclusions are drawn. 1) When water level is raised, the seepage line of downstream slope Is raised rapidly as flow velocity increases. 2) For the case of permeable layer, the seepage line raised rapidly as compare with impermeable layer when water lever is raised.

  • PDF

최단 전압붕괴점 계산을 위한 개선된 직접법과 재급전에 의한 전압안정도 향상 (Improved Direct Method for Calculating the Closest Voltage Collapse Point and Voltage Stability Enhancement by Generation Redispatch)

  • 남해곤;송충기;김동준
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.958-964
    • /
    • 1999
  • The distance in load parameter space to the closest saddle node bifurcation (CSNB) point provides the worst case power margin to voltage instability and the left eigenvector at CSNB identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents an improved direct method for computing CSNB: the order of nonlinear systems equations is reduced to about twice of the size of load flow equations in contrast to about three-times in Dobson's direct method; the initial guess for the direct method is computed efficiently and robustly by combined use of continuation power flow, a pair of multiple load flow solution with Lagrange interpolation. It is also shown that voltage stability may be enhanced significantly with shift of generations in the direction of the left eigenvector at CSNB.

  • PDF