• Title/Summary/Keyword: Flood routing

Search Result 197, Processing Time 0.026 seconds

A Study of Survivable Alternate Routing Algorithm (생존성있는 대체 경로 라우팅 알고리즘 연구)

  • Park, Young-Chul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.535-539
    • /
    • 2007
  • We study an degree of alternativeness and a survivability of alternate routing algorithm in mobile ad-hoc tactical communication networks. The common channel signaling scheme is used and flood search routing algorithm is used for analysis. We also study a connectivity performance for flood search routing, restricted flooding and hybrid routing. From the results we expect low blocking probabilities with alternate routing and the conventional flood search routing shows better connectivity performance which results in high survivability.

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

Flood Routing on the River by Revised Muskingum-Cunge Method (하도에서의 홍수추적 -수정 Muskingum-Cunge 방법-)

  • 홍종운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.13-23
    • /
    • 1979
  • The predictien of a design flood hydrograph at a particular site on a river may be based on the derivation of a discharge or stage hydrograph at an upstream section, together with a method to route this hydrograph along the rest of the river. In order to limit this investigation to cases where the assumption like uniform rainfall may be reasonably valid, the derivation of unit hydrographs has been limited to catchment with an area less than 500 km2. Consequently, flood routing methods provide a useful tool for the analysis of flooding in all but the smaller catchment, particularly where the shape of the hydrograph as well as the peak value is required. The author, therefore, will introduce here a flood routing method on the open channel with a peak discharge of the catchment area concerned. The importance of being able to route floods accurately is also reflected in the large number of flood routing method which have been developed since the year 1900. There are the modified puls method, Steinberg method, Goodrich method, Ekdahl method, Tatum's mean continuously Equation, wisler-Brater method, Muskingum, chung, and Muskingum-cunge (M-C) method and so on. The author will try to introduce a flood routing method which is revised Muskingum-cunge method. In calculating flood routing by the M-C method, whole variable parameters on the river were assumed to almost uniform values from the upstream to the downstream. In the results, the controlled flood rates at the 40km downstream on the river is appeared to decrease 22m$^3$/sec or 12 percent of the peak flood 170m$^3$/sec.

  • PDF

Flood Routing Analysis Considering the Effects of Dams in Han River (한강수계에서의 댐의 영향을 고려한 홍수추적)

  • Han, Kun-Yeun;Choi, Kyu-Hyun;Kim, Won;Kim, Dong-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.747-760
    • /
    • 2005
  • This study has performed flood routing computations considering the upstream and intermediate dams in Han River using DAMBRK. Hypothetical reservoirs with variable dimensions are used to compare the validity of the reservoir routing methods, that are storage routing and dynamic routing. The flood events in September, 1990 and August, 1995 are used to verify the applicability of the model. The model performs the flood analysis more accurately considering multiple dam effects in Han River. The methodologies presented in this study will give a good contribution for basin-wide flood forecasting in Han River basin.

Theory and Example of Flood Routing (공수조절의 이론 및 계산예)

  • 김동만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.6 no.1
    • /
    • pp.721-736
    • /
    • 1964
  • Flood routing is one of the most important engineering problems for the design of a spillway, and the procedures for the routing should be thoroughly understood by the engineers engaged in the planning of a spillway. There are many methods for the flood routing such as Muskingum, Steinberg, Puis, Holton, Goodrich, Rutter, Graves, Snyder, etc., which are being used in many countries. This article introduces the theory of the modified PuIs Method in detail which is exclusively being used in the Bureau of Reclamation, Department of Interior, U.S.A. Also, this article includes a routing example worked by the writter for the Ee-dong Reservoir of the Ki-ho Irrigation Association. in Kyong-gi Province.

  • PDF

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

A Channel Flood Routing by Muskingum Method Incorporating Lateral Inflows (측방 유입수를 고려한 자연 하도의 Muskingum 홍수추적)

  • 강인주;윤용남
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 1990
  • Three-parameter Muskingum flood routing model which incorporated the inflows alongside the river channel is applied for the Waegwan-Jeukpogyo reach of the Nakdong River using the flood data of 12 selected flood events experienced in this reach. The flood routing equations for three-parameter model were expressed as a system of finite difference equations and the routing constants were directly computed by matrix inversion method. Then, the three parameters, which consist of the storage constants(K), weighting fator(x), and lateral inflow parameter(α), were determined from the computed routing constants. The results of the present study showed that the model can predict with a fair accuracy the flood discharges at the downsteam end of the reach. The parameters K and x were seen as channel parameters which have close relations with the flood magnitude, whereas the lateral inflow parameter was shown to be strongly governed by the rainfall characteristics of the tributary watersheds contributing to the lateral inflows.

  • PDF

Flood Hazard Map in Woo Ee Stream Basin Using Conclusive Hydraulic Routing Model (결정론적 홍수위 추적 모형을 이용한 우이천 유역의 홍수범람도 작성)

  • Moon, Young-Il;Yoon, Sun-Kwon;Kim, Jae-Hyun;Ahn, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.637-640
    • /
    • 2008
  • Flood control and river improvement works are carried out every year for the defense of the flood disaster, it is impossible to avoid the damage when there is a flood exceeding the capacity of hydraulic structures. Therefore, nonstructural counter plans such as the establishment of flood hazard maps, the flood warning systems are essential with structural counter plans. In this study, analysis of the internal inundation effect using rainfall runoff model such as PC-SWMM was applied to Woo Ee experimental stream basin. Also, the design frequency analysis for effects of the external inundation was accomplished by main parameter estimation for conclusive hydraulic routing using HEC-RAS model. Finally, inundated areas for flood hazard map were estimated at Woo Ee downstream basin according to flood frequency using HEC-GeoRAS model linked by Arc View GIS.

  • PDF

A Channel Flood Routing by the Implicit Dynamic Wave Model

  • Yoon, Yong-Nam;Chung, Jong-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.69-84
    • /
    • 1991
  • US NWS/NETWORK is applied for the analysis of the flood of July 11-15, 1981 through the Goan-Indogyo reach of the Han River. For the flood hydrography synthesis of the lateral inflows from the major tributaries into the main reach the Cleak method is employed. NETWORK coupled with the Clark method of hydrography synthesis simulated with a fair accuracy the oberved flood hydrograph at the downstream boundary of the routing reach. The dffect of SCS runoff curve number for fributary flood synthesis is evaluated. The characteristics of the station variations and time variations of the flood discharges in the reach is also analyzed.

  • PDF

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF