• Title/Summary/Keyword: Flood Mitigation

Search Result 313, Processing Time 0.025 seconds

Numerical Simulation of Sand Bars downstream of Andong Dam (안동댐 하류 하천에서 사주의 재현 모의)

  • Jang, Chang-Lae;Shimizu, Yasuyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.379-388
    • /
    • 2010
  • This study examined the physical effects on the river changes downstream of Andong dam and simulated the reproduction of sand bars and the geomorphic changes numerically. The river bed downstream of Aandong dam and Imha dam was decreased and the mean diameter of bed materials was increased, and the number of lower channels was increased. The vegetated area was slightly increased after Andong dam construction. Moreover, the area was abruptly increased after Imha dam construction. The bankfull discharges was estimated to 580 $m^3/s$ after the dams construction and 2,857 $m^3/s$ before the dams. A flood mitigation safety by the dams construction considering return period was increased to 5 to 10 times. As a result of meso-scale regime analysis by using banfull discharge, the regime between single bars and multiple row bars before the dams construction was changed to completely the regime of multiple row bars after the dams. The numerical simulation results showed that the sand bars and lower channels were developed before the dams, and braided river was developed after the dams. This meant that the patterns of sand bars was changed by variable discharge due to the dams construction.

A Study on Typhoon Impacts in the Nakdong River Basin Associated with Decaying Phases of Central-Pacific El Niño (중앙태평양 엘니뇨의 쇠퇴특성에 따른 낙동강 유역의 태풍영향 분석)

  • Kim, Jong-Suk;Son, Chan-Young;Lee, Joo-Heon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.135-143
    • /
    • 2014
  • This study classified abnormal sea surface temperature changes of the central pacific region according to three evolution patterns. Focusing on typhoons that affect the Korean Peninsula, the research analyzed typhoon's occurrence spot and track, change in the central pressure characteristics, and the characteristics of change in typhoon precipitation and the number of occurrences of heavy rainfall in the Nakdong River Basin. As a result of analysis, in case of prolonged-decaying years and symmetric-decaying years, typhoon-related summer rainfall and heavy rainy days appeared to be higher than long-term average. But in case of abrupt-decaying years, the pattern of general decrease appeared. This is because typhoon's occurrence spot is located comparatively near the Korean peninsula, typhoon's central pressure is high, and typhoon's route generally moves to Japan. As the outcome, this study is expected to reduce flood damage through analyzing the characteristics of typhoon's activity according to CP El Ni$\tilde{n}$o evolution patterns and the characteristics of local typhoon rainfall. In addition, it is expected to provide useful information for establishing adaptation and mitigation to climate change.

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 2. Robustness Assessment of Structural Alternatives for the Problems of Water Pollution (도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 2. 수질오염 문제 구조적 대안의 내구성 평가)

  • Jung, Jihyeun;Lee, Changmin;An, Jinsung;Kim, Jae Young;Choi, Yongju
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • This study evaluated structural alternatives for managing water quality problems by reinterpreting and then applying the robustness-cost index (RCI) for urban flood problems. Cases of endogenous hormone pollution in treated sewage and proliferation of protozoa in intake-water were chosen as representative examples because they have different types of regulation standards for the treatment. Current facilities and structural alternatives with robustness indices (RIs) greater than unity were determined to be robust. The RI was combined with the cost index (CI) to obtain the RCI values. For the endogenous hormone pollution in treated sewage, a human-oriented estrogen $17{\beta}$-estradiol was selected as a target pollutant. The RI and RCI values for a structural alternative, extension of the current sewage treatment facility for advanced treatment, were greater than the values for the current practice of conventional activated sludge process. For the intake-water pollution by protozoa, UV and ozone disinfection facilities were evaluated for inactivation of Cryptosporidium parvum. The RCI values for ozone disinfection were greater than those for UV disinfection. Based on the results and the logics involved in the calculation of RCI for water quality issues we studied, we proposed procedures for establishing and implementing structural alternatives for the restoration from and prevention of outbreaks of water quality problems.

Basin flood Discharge Characteristic According to AMC Condition (AMC 조건에 따른 유역 홍수유출 특성)

  • Yoo, Chulsang;Lee, Jiho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • 본 연구에서는 유역 특성의 판단에 적절한 호우사상을 선별하여 사용하는 것이 어느 정도 효과적인지를 평가하였다. 토양의 습윤 정도에 따른 유역의 특성을 반영하기 위해 AMC 조건을 고려하였으며, 유역의 집중시간 및 저류상수의 추정방법으로는 Nash 모형의 구조를 이용하는 방법을 적용하였다. 아울러 강우의 공간변동 정도를 파악하기 위해 변동계수를 이용하여 평가하였으며, 추정된 매개변수들의 대푯값 및 가능범위를 도시적으로 결정하였다. 이를 유역면적이 큰 충주댐 유역의 영춘 지점과 상대적으로 작은 평창강 방림 지점을 대상유역으로 선정하여, 다양한 호우사상에 대한 분석이 유역의 규모에 대비되어 수행될 수 있도록 하였다. 그 결과를 정리하면 다음과 같다. 강우의 공간변동 정도를 변동계수로 평가한 결과 AMC-III 조건에서 강우강도의 공간적 변동폭이 작음을 확인하였다. 따라서 AMC-III 조건에서 유도한 유출특성이 단위도의 이론에 부합하는 것으로 판단된다. 아울러 AMC 조건에 따라 추정된 집중시간과 저류상수는 AMC-I보다 AMC-III 경우에서 상대적으로 변동폭도 작았으며, 선형저수지의 특성 역시 일관됨을 확인하였다. 특히, AMC-I 조건의 경우는 선행강우가 없는 상태에서의 호우사상들로서 일단 그 크기가 작을 가능성이 크다는 문제점을 가지고 있다. 따라서 AMC-I 조건의 호우사상 보다는 AMC-III 조건의 호우사상을 이용하는 게 보다 홍수 유출 해석에 유리하다고 판단된다. 추정된 매개변수의 대푯값과 그의 가능범위 결정에 앞서, AMC-III 조건에서 추정된 매개변수들이 군집해 있는 구간을 설정한 후, 이를 벗어나는 매개변수를 제외하였다. 다음으로 매개변수의 무게중심 즉, 평균을 중점으로 하여 사분위수(25%, 50%, 75%)에 해당되는 매개변수 개수가 선택되도록 사변형을 작성하였다. 이 때 집중시간과 저류상수 사이의 상관성을 고려하기 위해 사변형은 선형저수지 개수의 선과 선형저수지의 저류상수의 선이 만나는 점을 연결하여 작성하였다. 영춘 지점의 경우, 집중시간의 대푯값은 20.6 hr, 저류상수의 대푯값은 18.4 hr, 방림 지점은 각각 7.5 hr, 8.2 hr이다. 매개변수의 대푯값 가능범위는 충주댐 영춘 지점의 경우 1사분에서 집중시간 18-25 hr, 저류 상수는 17-20 hr 정도, 방림 지점의 경우 집중시간은 5-10 hr, 저류상수는 7-11 hr 정도이다. 아울러 추정된 대푯값의 가능 범위를 이용하여 기존의 경험공식을 평가하였다. 그 결과 집중시간의 경우 Kraven 공식, 정성원 공식이, 저류상수의 경우 Sabol 공식, 정성원 공식, 윤태훈 공식이 대푯값의 범위에 속하는 것으로 분석되었다. 그러나 분석 지점의 부족으로 기존의 경험공식의 정량적 평가는 어렵다. 추후에 보다 많은 지점을 대상으로 분석한다면 보다 설득력이 있는 경험공식의 평가와 다양한 유역에 적합한 경험공식의 산정도 가능할 것이다.

  • PDF

A Study on the Distributive Equity of Neighborhood Urban Park in Seoul Viewed from Green Welfare (녹색복지 관점에서 서울시 생활권 도시공원의 분배적 형평성 분석)

  • Kim, Yong-Gook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.3
    • /
    • pp.76-89
    • /
    • 2014
  • The functions of urban park including health related benefit and climate adaptation and mitigation are expanding. However, in-depth research and discourse on the equitable distribution of expanded park function has been limited so far. Following research suggests Green Welfare concept to reflect distributive equity and multifunctionality in the process of urban park policy development and execution. This study developed park welfare indices to analyze disparities of neighborhood urban park(NUP) distribution viewed from green welfare by literature review. The findings analyzed through the Correlation Analysis and Cluster Analysis by SPSS 18.0. The results of the study are as follows. First, green welfare is defined as "to receive equitable benefits and participate in the delivery process of green services which are promoting health and securing safety from climate change risks for every citizen by life cycle regardless of socioeconomic status". Second, NUP per person in Seoul indicate meaningful differences by socioeconomic and environmental status of Seoul administrative districts. Park welfare indices correlated to NUP per person were shown population density(negative), percentage of individuals $aged{\geq}65$(positive), percentage of self-reliance of local finance(positive), flood and air pollution vulnerability by climate change(negative). Third, the cluster analysis identifies three significant clusters that indicate differences of park welfare level. Thus, it was found that NUP in Seoul from a green welfare perspective was provided disproportionately. Future urban park policy in Seoul was required equitable distribution of multifunctionality of park beyond quantitative expansion, and priority consideration should be given to park service consumer.

Impact Assessment of Climate Change on Drought Risk (기후변화가 가뭄 위험성에 미치는 영향 평가)

  • Kim, Byung-Sik;Kwon, Hyun-Han;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • A chronic drought stress has been imposed during non-rainy season(from winter to spring) since 1990s. We faced the most significant water crisis in 2001, and the drought was characterized by sultry weather and severe drought on a national scale. It has been widely acknowledged that the drought related damage is 2-3 times serious than floods. In the list of the world's largest natural disaster compiled by NOAA, 4 of the top 5 disasters are droughts. And according to the analysis from the NDMC report, the drought has the highest annual average damage among all the disasters. There was a very serious impact on the economic such as rising consumer price during the 2001 spring drought in Korea. There has been flood prevention measures implemented at national-level but for mitigation of droughts, there are only plans aimed at emergency (short-term) restoration rather than the comprehensive preventive measures. In addition, there is a lack of a clear set of indicators to express drought situation objectively, and therefore it is important and urgent to begin a systematic study. In this study, a nonstationary downscaling model using RCM based climate change scenario was first applied to simulate precipitation, and the simulated precipitation data was used to derive Standardized Precipitation Index (SPI). The SPI under climate change was used to evaluate the spatio-temporal variability of drought through principal component analysis at three different time scales which are 2015, 2045 and 2075. It was found that spatio-temporal variability is likely to modulate with climate change.

Worries and Reality Regarding Porous Asphalt Pavements: Structural Integrity, Flood Mitigation and Non-Point Pollution Reduction (투수성 아스팔트 포장에 대한 우려와 실제: 구조적 적합성, 홍수 완화 그리고 비점오염 저감)

  • Yoo, Inkyoon;Lee, Suhyung;Han, Daeseok;Lee, Sanghyuk
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.272-278
    • /
    • 2016
  • Porous pavements are recommended as a Low-Impact Development (LID) method which is a strategy to develop a water cycle as close to a natural state as possible, and to solve the urban impervious surface problems. Porous pavements can yield a solution if it provides a more permeable surface with extra space to contain extra water from building roofs. But there are few applications in Korea because of a lack of recognition and experience. Highway engineers are mainly concerned about the infiltration of water into pavement structures. They worry about the weakening of the asphalt mixture and subgrade, and freezing during the winter season due to the infiltration of water. Meanwhile, hydrological experts doubt the effects of the amount of water to control during the flooding season, and environmental experts prefer a non-point pollution treatment system established beside highway. In this study, from reviewing the history and the body of literature about porous pavements, conclusions regarding the most advanced technologies were made. First, traditional thickness designs can be used for porous pavement, no extra distresses was found by weakening and freezing during the winter season. Second, hydrological design can be made by controlling the thickness of the pavement and the outlet of water. Third, the treatment efficiency of non-point pollution of porous pavements is not worse than any other method. Importantly, it's a more eco-friendly solution because of its lower requirement for de-icing agents.

Development and assessment of water management resilience of mid-small scale tributaries (지류 중소하천의 물관리 탄력성 평가지수 개발 및 평가)

  • Park, Jung Eun;Lee, Eul Rae;Lim, Kwang Suop
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Water Management Resilience Index (WMRI) was developed as a policy measure of adaptability to withstand water stresses and to set up water management strategies mainly in mid-small scale tributaries, and then evaluated on 117 sub-basins in South Korea. The index consists of 3 sub-indices such as vulnerability, robustness and redundancy sub-indices, each including indicators of 3 sectors: water use, flood mitigation, and river environment. Total number of indicators selected for the index was 31. Taking into account the stream order and control capability of river flow discharge, sub-basins were categorized into 3: 1 for mainstreams of lower large dams, 2 and 3 for tributaries, respectively without and with flow discharge regulation. As a result of the evaluation, resilience index scores in Category 2 and 3 are much lower than that of Category 1, especially with very poor score of redundancy. Although there was no significant difference between mainstream and tributaries in vulnerability and robustness sub-indices, results of redundancy sub-index in tributaries were lower than those in mainstream. Thus, it is conceived that the variety of water management schemes should be considered to improve their resilience in the face of future uncertainty. Addressing comprehensive stability of river basin against internal and external impacts, WMRI in this study can also be used for the prioritization of water management plans.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Quantifying Climate Change Regulating Service of Forest Ecosystem - Focus on Quantifying Carbon Storage and Sequestration - (산림생태계 기후변화 조절서비스 계량화 방법 - 탄소 저장 및 흡수기능 계량화 방법을 중심으로 -)

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Jeon, Seong Woo;Kim, Joon Sun;Kwak, Hanbin;Kim, Moonil;Kim, Jaeuk;Kim, Jung Teak
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2014
  • Forest ecosystem provides variety goods and services for human being. Unlike goods, forest ecosystem services could not be easily priced by market mechanism. This uncertainty has been caused to conflict in decision-making related forest ecosystem services. Quantification of forest ecosystem services is required to understand the importance of ecosystem services and their contribution to decision-making. As a growing concern of climate change, it is necessary to quantify and calculate carbon storage and sequestration in forest. In this study, for quantifying carbon storage and sequestration, we compared scale, output, input data availability of the models and analyzed the applicability of the models to Korea. The results of this study show that most models are applicable for quantifying carbon storage and sequestration. However, relatively few models are applicable for other regulating services (air quality regulation, flood mitigation, erosion control, water quality, etc.) of forest. This study would be helpful for quantifying regulating services of forest ecosystem research.