DOI QR코드

DOI QR Code

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 2. Robustness Assessment of Structural Alternatives for the Problems of Water Pollution

도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 2. 수질오염 문제 구조적 대안의 내구성 평가

  • Jung, Jihyeun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Lee, Changmin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • An, Jinsung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Jae Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Choi, Yongju (Department of Civil and Environmental Engineering, Seoul National University)
  • 정지현 (서울대학교 건설환경공학부) ;
  • 이창민 (서울대학교 건설환경공학부) ;
  • 안진성 (서울대학교 건설환경공학부) ;
  • 김재영 (서울대학교 건설환경공학부) ;
  • 최용주 (서울대학교 건설환경공학부)
  • Received : 2016.07.25
  • Accepted : 2016.09.10
  • Published : 2016.09.30

Abstract

This study evaluated structural alternatives for managing water quality problems by reinterpreting and then applying the robustness-cost index (RCI) for urban flood problems. Cases of endogenous hormone pollution in treated sewage and proliferation of protozoa in intake-water were chosen as representative examples because they have different types of regulation standards for the treatment. Current facilities and structural alternatives with robustness indices (RIs) greater than unity were determined to be robust. The RI was combined with the cost index (CI) to obtain the RCI values. For the endogenous hormone pollution in treated sewage, a human-oriented estrogen $17{\beta}$-estradiol was selected as a target pollutant. The RI and RCI values for a structural alternative, extension of the current sewage treatment facility for advanced treatment, were greater than the values for the current practice of conventional activated sludge process. For the intake-water pollution by protozoa, UV and ozone disinfection facilities were evaluated for inactivation of Cryptosporidium parvum. The RCI values for ozone disinfection were greater than those for UV disinfection. Based on the results and the logics involved in the calculation of RCI for water quality issues we studied, we proposed procedures for establishing and implementing structural alternatives for the restoration from and prevention of outbreaks of water quality problems.

본 연구는 도시 홍수문제의 구조적 해결방안을 도출하기 위하여 내구성-비용지수 (robustness cost index, RCI)를 수질오염 문제 사례에 재해석 및 적용하였다. 처리기준 산정방식이 다른 하수 처리수 내 내생호르몬 오염과 취수원 원생동물 번성을 대표 사례로 선정하여 기존시설과 대안시설 (구조적 대안)의 내구성 지수 (RI) 값이 1 이상인 경우를 내구성을 확보한 대안으로 판정하고 내구성 지수와 비용지수 (CI)를 결합한 RCI 값을 산정하였다. 하수 처리수 내 내생호르몬 오염은 인체로부터 기인하는 $17{\beta}$-estradiol 을 대상 오염물질로 하여 현재 하수처리시설과 대안시설 (고도처리공정 증축)을 비교하였고, 고도처리공정을 증축한 사례에서 RI뿐만 아니라 RCI 값이 큰 결과가 나타났다. 취수원 원생동물 번성의 경우 크립토스포리디움을 처리하기 위한 소독방안으로 자외선 소독과 오존 소독을 대상으로 RCI를 산정하였고 오존 소독시설이 RCI값이 더 높은 것을 확인하였다. 처리기준이 다른 수질오염사례의 RCI 산정과정과 도출한 값을 바탕으로 재해 발생 시 피해 복구와 피해 방지를 위한 구조적 대안 수립과정의 방향을 제시하고 그 구축전략을 제안하였다.

Keywords

References

  1. Johnson, A.C. and Williams, R.J. 2004. A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinyl estradiol at sewage treatment works. Environmental Science & Technology 38: 3649-3658. https://doi.org/10.1021/es035342u
  2. Joss, A., Andersen, H., Ternes, T., Richle, P.R. and Siegrist, H. 2004. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science & Technology 38: 3047-3055. https://doi.org/10.1021/es0351488
  3. KMGL. 2016. Enforcement decree of the water supply and waterworks installation act. Korea Ministry of Government Legislation. http://www.law.go.kr/lsInfoP.do?lsiSeq=164333&efYd=20141128. Accessed 7 July 2016. (in Korean)
  4. KMHW. 2013. Epidemiological investigation of infectious diseases in Korea. Annual Report 2012. Korean Ministry of Health and Welfare, Sejong, Korea. (in Korean)
  5. KMOE. 2012. Regulations on the water purification standards. Korean Ministry of Environment, Sejong , Korea. (in Korean)
  6. KMOE. 2013. 2012 Statistics of sewerage. Korean Ministry of Environment, Sejong, Korea. (in Korean)
  7. KOSIS. 2016. Korean Statistical Information Service. http://kosis.kr. Accessed 15 February 2016.
  8. Kim, Y.Y. and Lee, S.J. 2011 Evaluation of water quality for the Han River tributaries using multivariate analysis. Journal of Korean Society of Environmental Engineers 33(7): 501-510. (in Korean) https://doi.org/10.4491/KSEE.2011.33.7.501
  9. Lee, J.-H., Heo, J. M., Park, Y. S. and Park, H.M. 2012. Survey on the consumption of the phytoestrogen isoflavone in postmenopausal Korean women. Journal of Korean Society of Menopause 18: 163-173. (in Korean) https://doi.org/10.6118/jksm.2012.18.3.163
  10. Lee,C., Jung, J., An, J., Kim, J.Y. and Choi, Y. 2016. Establishment of resilient infrastructures for the mitigation of an urban water problem: 1. Robustness assessment of structural alternatives for the problem of urban floods. Ecology and Resilient Infrastructure 3: 117-125. (in Korean) https://doi.org/10.17820/eri.2016.3.2.117
  11. Lee, M.Y., Park, S.J., Cho, E.J., Park, S.J., Han, S.H. and Kwon, O.-S. 2013. Health risk assessment of Cryptosporidium in tap water in Korea. Korean Journal of Environmental Health 39: 32-42. (in Korean) https://doi.org/10.5668/JEHS.2013.39.1.32
  12. Lee, J.G. 2014. Economic and Performance Analysis on Advanced Oxidation Process in Purification Plant. Master Thesis, Chungnam National University, Daejeon, Korea. (in Korea)
  13. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., and Wang, X.C. 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment 473: 619-641.
  14. NIER. 2013. Manuals on the water purification standards. National Institute of Environmental Research, Incheon, Korea. (in Korean)
  15. Maria, S.S, Per, H., Esteban, B. and Lars-Anders, H. 2013. Low concentrations, potential ecological consequences: Synthetic estrogens alter life-history and demographic structures of aquatic invertebrates. Environmental Pollution 179: 237-243.
  16. Seoul. 2016. Advanced water treatment and facility modernization of sewage treatment center. https://env.seoul.go.kr/archives/757. Accessed 15 February 2016.
  17. Servos, M.R., Bennie, D.T., Burnison, B.K., Jurkovic, A., McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S.A. and Ternes, T.A. 2005. Distribution of estrogens, $17{\beta}$-estradiol and estrone in Canadian municipal wastewater treatment plants. Science of the Total Environment 336: 155-170. https://doi.org/10.1016/j.scitotenv.2004.05.025
  18. Son, H.J., Kim, S.G., Yeom, H.S. and Choi, J.T. 2013. Evaluation of applicability and economical efficiency of peroxone process for removal of micropollutants in drinking water treatment. Journal of Environmental Science International 22: 905-913. https://doi.org/10.5322/JESI.2013.22.7.905
  19. Teunis, P.F.M., Medema, G.J., Kruidenier, L. and Havelaar, A.H. 1997. Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Resources 31: 1333-1346.
  20. Vugrin, E.D., Warren, D.E., Ehlen, M.A. and Camphouse, R.C. 2010. A framework for assessing the resilience of infrastructure and economic systems. In, Gopalakrishnan, K. and Peeta, S. (eds.), Sustainable and Resilient Critical Infrastructure Systems, Springer-Verlag, Berlin, Germany. 77-116.

Cited by

  1. 회복탄력성을 고려한 기상 시나리오별 가뭄 용수 공급방안: 나주호를 중심으로 vol.60, pp.5, 2016, https://doi.org/10.5389/ksae.2018.60.5.115