• 제목/요약/키워드: Flexural Experiment

검색결과 335건 처리시간 0.025초

조립식 영구 쏘일네일링 공법의 개발을 위한 FRP평판의 휨해석에 관한 연구 (A Study on the Flexural Analysis of FRP Plate to Develop Fabricated Permanent Soil Nailing System)

  • 최훈;주형중;남정훈;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.180-183
    • /
    • 2005
  • Application of the soil nailing system is continuously extended to stabilize excavations and slopes. Although there are many applications in the construction site, the system is still needed to improve its mechanical performance and durability. So, the use of FRP for this system can be an alternative for the conventional system. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering applications due to their superior mechanical and physical properties. This paper presents an experimental and theoretical study on the flexural behavior of FRP plate to develop fabricated permanent soil nailing system. In this study, mechanical properties of FRP plate have been investigated. Rectangular FRP plates that is simply supported and uniformly loaded over the area of a circle at the center of plate are analyzed by experiment, classical plate theory, and finite element method. From the results of analysis we can determine the shape of curved FRP plate which will exert certain amount of prestressing force in soil nail.

  • PDF

철근콘크리트 부재의 균열 후 강성 이론 (Theoretical Stiffness of Cracked Reinforced Concrete Elements)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발 (Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber)

  • 곽계환;황해성;성배경;장화섭
    • 한국농공학회논문집
    • /
    • 제48권3호
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • 제14권4호
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구 (Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube)

  • 임정순;김성칠;조재병;이수근
    • 한국방재학회 논문집
    • /
    • 제3권1호
    • /
    • pp.123-131
    • /
    • 2003
  • 파형강관을 삽입하여 보강된 중공원형단면의 역학적 거동을 연구하기 위하여 직경 50cm, 길이 340cm의 시험체를 제작하였고, 3점 휨시험을 수행하였다. 하중재하는 파괴 또는 최대한변형이 발생할 때까지 느리게 증가시켰다. 시험하는 동안에 시험체 중앙의 휨방향 변위와 인장측과 압축측의 종방향 변위를 측정하였다. 측정데이타를 분석한 결과를 파형강관이 삽입되지 않은 등가단면에 대한 해석결과와 비교하였다. 비교결과, 중공 철근콘크리트 부재의 휨강성과 연성이 파형강관을 내부에 삽입함으로써 크게 향상시킬 수 있는 것으로 나타났다.

잔골재로 고막 패각을 사용한 철근콘크리트 보의 휨 거동에 관한 연구 (A Study on Flexural Behavior of Reinforced Concrete Beam Using Cockle Shells as Fine Aggregate)

  • 김정섭;조철희;김광섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2004
  • 압축강도 실험결과, 고막패각 혼입량 15%와 20% 시험체가 무혼입 시험체보다 증가하는 것으로 나타났다. 시험체의 연성능력은 일반 잔골재를 사용한 시험체가 가장 높았으며, 고막패각의 혼입량이 많을수록 연성능력은 낮게 나타났고, 고막패각 혼입량이 많을수록 낮은 하중에서 초기균열이 발생하여 하중의 증가로 인하여 부재의 처짐 속도가 빨라지는 것으로 나타났다. 이는 고막패각의 혼입량에 따라 부착력이 부족하여, 이후 항복내력이 상대적으로 증가하지 못한 것으로 판단된다

Experimental study on flexural strength of reinforced modular composite profiled beams

  • Ahn, Hyung-Joon;Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.313-328
    • /
    • 2008
  • This study attempts to suggest bending reinforcement method by applying bending reinforcement to composite profile beam in which the concept of prefabrication is introduced. Profile use can be in place of framework and is effective in improvement of shear and bending strength and advantageous in long-term deflection. As a result of experiment, MPB-CB2 with improved module had higher strength and ductility than the previously published MPB-CB and MPB-LB. In case of bending reinforcement with deformed bar and built-up T-shape section based on MPB-CB2, the MPB-RB series reinforced with deformed bar were found to have higher initial stiffness, bending strength and ductility than the MPB-RT series. The less reinforcement effect of the MPB-RT series might be caused by poor concrete filling at the bottom of the built-up T-shape. In comparison between theoretical values and experimental values using minimum yield strength, the ratio between experimental value and theoretical value was shown to be 0.9 or higher except for MPB-RB16 and MPB-RT16 that have more reinforcement compared to the section, thus it is deemed that the reinforced modular composite profiled beam is highly applicable on the basis of minimum yield strength.

고연성재 보강 철근콘크리트 기둥의 내진성능 연구 (Study on Seismic Performance of RC Column with Super-Flexibility Membrane)

  • 이원철;임성순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.1-12
    • /
    • 2013
  • 본 연구는 보강재를 사용하지 않은 기존 RC기둥과 CSF (고연성재로 보강한 RC기둥) 등 2가지 형태의 기둥에 대한 내진성능특성과 변위연성도 특성 분석을 연구목적으로 한다. 이러한 특성들을 유한요소법에 의한 해석과 실험으로 분석한 결과, CSF의 균열양상과 하중-변위 곡선에 대한 실험치와 해석치는 유사함을 보였다. 보강하지 않은 기둥 (CNF)은 전단균열이 지배적이나 보강기둥 (CSF)은 휨균열이 지배적이다. 보강기둥의 최대변위 크기와 변위연성도는 CNF와 비교하여 큰 증가를 나타낸다. 그러므로 기존기둥의 내진성능과 변위연성도 향상시킬 때 CSF는 CNF의 대체구조로 사용할 수 있다.

해수 열화 및 원공 손상 CF/Aramid 복합재의 패치 부착이 굽힘거동에 미치는 영향 (The Patch Attachment Effect for Bending Behavior on the CF/Aramid Composites with Seawater Aging and Hole Damage)

  • 권우덕;권오헌;윤유성
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.20-26
    • /
    • 2023
  • Fiber-reinforced composite materials with carbon, glass, and aramid fibers are widely applied to industrial field structures due to their excellent properties. However, carbon fibers are vulnerable to external impacts, whereas aramid fibers degrade when exposed to water. This study evaluated carbon/aramid fiber composites degraded and damaged by high-temperature saline environments using acoustic emission (AE). The test specimen was molded using an autoclave and immersed in seawater at 70 ℃ for 224 days. In order to imitate the damage, a 3-mm-diameter hole was drilled using a diamond drill. Additionally, the specimen with the perforation was repaired by patch attachment processing. Three-point bending was used to conduct the flexural experiment, and an AE sensor with a 150-kHz resonance frequency was attached to evaluate the damage and the effect of patch attachment. AE accumulative counts obtained at the maximum load were 69.2, 67.1, and 91.2 for a high-temperature seawater deteriorated condition, a hole specimen, and a repaired patch specimen, respectively. Furthermore, the maximum amplitude of AE was detected at low values of 28 dB, 31.3 dB, and 30.3 dB.

시멘트 기반 탄화슬러지 치환율에 따른 경화체의 특성 (Properties of Matrix According to the Replacement Ratio of Portland Cement-based Carbonation Sluge)

  • 강용모;이혜은;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.189-190
    • /
    • 2021
  • Recently, the spread of intense social distancing and untact culture due to COVID-19 has increased the time spent indoors. In addition, according to the International Cancer Institute, fine dust was classified as a first-class carcinogen, a substance found to be carcinogenic, such as asbestos and benzene. As a result, interest in indoor air quality is increasing, and many studies are underway to reduce air pollutants. This study is a basic experiment of a board made to improve indoor air quality. The basic characteristics of the board, flexural strength and compressive strength, are analyzed and the results of the test are as follows. Experiments have shown that flexural strength and compressive strength tend to decrease as the replacement rate of hydrocarbons increases. It is believed that the strength of the sludge has decreased due to the increase in internal voids due to the increase in non-surface area, volume and diameter of microfiber as it undergoes the carbonation process. In addition, it is believed that the amount of moisture needed for curing during the mixing process was reduced due to the absorption of hydrocarbons.

  • PDF