• Title/Summary/Keyword: Flexural Beam

Search Result 1,211, Processing Time 0.021 seconds

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions (GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가)

  • Jin-Won Nam;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun;Riadh Bennai;Mokhtar Nebab;Mouloud Dahmane;Hassen Ait Atmane
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.315-337
    • /
    • 2023
  • During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.

An Experimental Study on the Fatigue Flexural Bonding Characteristic of Concrete Beam Reinforced with GFRP Rebar (GFRP Rebar로 보강된 콘크리트보의 피로 휨·부착성능에 관한 실험적 연구)

  • Oh, Hong Seob;Sim, Jong Sung;Kang, Tae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point fatigue bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times(5db), and 15times(15db) of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the 5db specimen, patterns of the pull-out failure and concrete shear failure appeared in the 15db specimen showed only concrete shear failure at the end of bonding length. Therefore, The strain development consist of three different stage : A rapid increases form 0 to about 10% of total fatigue life. A uniform increases form 10% to about 70%~90%. Then a rapid increases until failure, if failure takes place. It seems that stress level has not influence on the secant modules of elasticity. And also according to the outcome the existing strengthening method came out to be the most superiority in S-N graphs.

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Time-dependent properties of lightweight concrete using sedimentary lightweight aggregate and its application in prestressed concrete beams

  • Chen, How-Ji;Tsai, Wen-Po;Tang, Chao-Wei;Liu, Te-Hung
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.833-847
    • /
    • 2011
  • We have developed a lightweight aggregate (LWA) concrete made by expanding fine sediments dredged from the Shihmen Reservoir (Taiwan) with high heat. In this study, the performance of the concrete and of prestressed concrete beams made of the sedimentary LWA were tested and compared with those made of normal-weight concrete (NC). The test results show that the lightweight concrete (LWAC) exhibited comparable time-dependent properties (i.e., compressive strength, elastic modulus, drying shrinkage, and creep) as compared with the NC samples. In addition, the LWAC beams exhibited a smaller percentage of prestress loss compared with the NC beams. Moreover, on average, the LWAC beams could resist loading up to 96% of that of the NC beams, and the experimental strengths were greater than the nominal strengths calculated by the ACI Code method. This investigation thus established that sedimentary LWA can be recommended for structural concrete applications.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

The random structural response due to a turbulent boundary layer excitation

  • De Rosa, S.;Franco, F.;Romano, G.;Scaramuzzino, F.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2003
  • In this paper, the structural random response due to the turbulent boundary layer excitation is investigated. Using the mode shapes and natural frequencies of an undamped structural operator, a fully analytical model has been assembled. The auto and cross-spectral densities of kinematic quantities are so determined through exact analytical expansions. In order to reduce the computational costs associated with the needed number of modes, it has been tested an innovative methodology based on a scaling procedure. In fact, by using a reduced spatial domain and defining accordingly an augmented artificial damping, it is possible to get the same energy response with reduced computational costs. The item to be checked was the power spectral density of the displacement response for a flexural simply supported beam; the very simple structure was selected just to highlight the main characteristics of the technique. In principle, it can be applied successfully to any quantity derived from the modal operators. The criterion and the rule of scaling the domain are also presented, investigated and discussed. The obtained results are encouraging and they allow thinking successfully to the definition of procedure that could represent a bridge between modal and energy methods.

Measurement of Local Elastic Properties of Flip-chip Bump Materials using Contact Resonance Force Microscopy (접촉 공진 힘 현미경 기술을 이용한 플립 칩 범프 재료의 국부 탄성계수 측정)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Junhee
    • Tribology and Lubricants
    • /
    • v.28 no.4
    • /
    • pp.173-177
    • /
    • 2012
  • We used contact resonance force microscopy (CRFM) technique to determine the quantitative elastic properties of multiple materials integrated on the sub micrometer scale. The CRFM approach measures the frequencies of an AFM cantilever's first two flexural resonances while in contact with a material. The plain strain modulus of an unknown or test material can be obtained by comparing the resonant spectrum of the test material to that of a reference material. In this study we examined the following bumping materials for flip chip by using copper electrode as a reference material: NiP, Solder (Sn-Au-Cu alloy) and under filled epoxy. Data were analyzed by conventional beam dynamics and contact dynamics. The results showed a good agreement (~15% difference) with corresponding values determined by nanoindentaion. These results provide insight into the use of CRFM methods to attain reliable and accurate measurements of elastic properties of materials on the nanoscale.

Timber-FRP composite beam subjected to negative bending

  • Subhani, Mahbube;Globa, Anastasia;Moloney, Jules
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.353-365
    • /
    • 2020
  • In the previous studies, the authors proposed the use of laminated veneer lumber - carbon fiber reinforced polymer (LVL-CFRP) composite beams for structural application. Bond strength of the LVL-to-CFRP interface and flexural strengthening schemes to increase the bending capacity subjected to positive and negative moment were discussed in the previous works. In this article, theoretical models are proposed to predict the moment capacity when the LVL-CFRP beams are subjected to negative moment. Two common failure modes - CFRP fracture and debonding of CFRP are considered. The non-linear model proposed for positive moment is modified for negative moment to determine the section moment capacity. For the debonding based failure, previously developed bond strength model for CFRP-to-LVL interface is implemented. The theoretical models are validated against the experimental results and then use to determine the moment-rotation behaviour and rotational rigidity to compare the efficacy of various strengthening techniques. It is found that combined use of bi- and uni-directional CFRP U-wrap at the joint performs well in terms of both moment capacity and rotational rigidity.