• Title/Summary/Keyword: Flexible surface

Search Result 905, Processing Time 0.026 seconds

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

Structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate (수소 분위기에서 유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Jo, D.B.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under hydrogen ambient gases (Ar, $Ar+H^2$) at room temperature. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $H^2$ under $Ar+H^2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show good current density-voltage-luminance characteristics. This suggests that flat surface roughness and low electrical resistivity of a-IZO anode film lead to more efficient anode material in OLED devices.

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

A Study on the Behavior of Flexible Riser for Upwelling Deep Ocean Water by a Numerical Method (수치해석적 방법을 통한 해양심층수 취수용 유연 라이저의 거동 해석에 관한 연구)

  • JUNG DONG-HO;KIM HYEON-JU;PARK HAN-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.15-22
    • /
    • 2004
  • Static and dynamic analyses of a very flexible and light riser, for upwelling the deep ocean water, is performed. In this numerical study, an implicit finite difference algorithm is employed for three-dimensional riser equations. Fluid non-linearity and bending stiffness are considered and solved, using the Newton-Raphson iteration. Maintaining the depth of end point of a flexible and light riser is very important for upwelling deep ocean water in a floating type development system. Weight is attached at the end point of the riser in order to maintain its intake depth. It is designed under the strong surface current and the configuration of the rise is predicted. In the dynamic analysis, the tension variation at the top point of the riser is presented. T e results of this study can contribute to the design of the development system in floating type for upwelling deep ocean water.

Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress (플렉서블 CIGS 태양전지의 굽힘 응력에 의한 셀 특성 변화 연구)

  • Kim, Sungjun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.163-168
    • /
    • 2020
  • We studied the change of photovoltaic properties of a flexible CuInxGa(1-x)Se2 (CIGS) solar cell fabricated on polyimide by mechanical bending with curvature radii of 75 mm (75R) and 20 mm (20R). The flexible CIGS cells were flattened on a PET film, then placed and forced against the surface of a curved block fabricated with pre-designed curvatures. Both up (compressive) and down (tensile) bending were applied to a specimen of CIGS on PET with curvatures of 75R and 20R for 10,000 times and 2,000 times, respectively. From J-V measurements, we found that the conversion efficiency (Eff.) was reduced by 3% and 4% for up-and down-bending, respectively, at curvature 75R; it was greatly reduced by 15% for curvature 20R in the up-bending. However, the open circuit voltage (Voc) and short-circuit current density (Jsc) seemed to change little, within 3%, for the applied mechanical stresses. The degradation in Eff. resulted from the deterioration of the series (Rs) and shunt (Rsh) resistances of the solar cell.

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Estimation of Anti-vibration Glove Performance Considering the Vibration Characteristic of Power Tool through Development of Flexible Palm Adapter (Flexible Palm 어댑터의 개발을 통한 동력 공구의 진동 특성을 고려한 방진장갑의 성능 평가)

  • Song, Chi-Mun;Jang, Han-Kee;Hong, Seok-In;Chai, Jang-Bom
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2009
  • This study aims to show the guideline to select optimal anti-vibration gloves for specific power tools to prevent hazardous vibration to human body. It is most desirable for the correct evaluation of handtransmitted vibration form the power tool handle to measure the acceleration between the handle surface and the hand palm as recommended in ISO 5349-1. First, the accurate acceleration measurement device was developed of which the thickness and weight were less than 6 mm and 12 g respectively so that it can be placed between the handle and the palm without any inconvenience during the measurement. Finally, using the device we estimated anti-vibration glove performances considering the frequency characteristics of generated vibration by the power tool.

Microfiber-based Textile Pressure Sensor with High Sensitivity and Skin-breathability (높은 민감도 및 우수한 피부 통기성을 가진 마이크로 섬유 기반의 직물형 유연 압력 센서)

  • Kangto Han;Jang-hee Choi;Jeongwoo Lim;Hyeyoung Gong;Geun Yeol Bae
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.179-187
    • /
    • 2023
  • In this study, we developed a microfiber-based flexible pressure sensor with high sensitivity and excellent skin breathability. A nonwoven fabric composed of microfibers was prepared by electrospinning, which resulted in excellent moisture permeability of the sensor (143 g∙m-2∙h-1). In particular, high-pressure sensitivity (0.36 kPa-1) was achieved by introducing submicron structures on the microfiber surface by controlling the ambient humidity during electrospinning. The fabrication technology of the microfiber-based flexible pressure sensors reported in this study is expected to contribute to the commercialization of flexible pressure sensors applicable to long-term wearable health monitoring as well as virtual/augmented reality and electronic skin applications.

Improvement of Electrical and Mechanical Characteristics of Organic Thin Film Transistor with Organic/Inorganic Laminated Gate Dielectric (유연성 유기 박막트랜지스터 적용을 위한 다층 게이트 절연막의 전기적 및 기계적 특성 향상 연구)

  • Noh, H.Y.;Seol, Y.G.;Kim, S.I.;Lee, N.E.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, improvement of mechanical and electrical properties of gate dielectric layer for flexible organic thin film transistor (OTFT) devices was investigated. In order to increase the mechanical flexibility of PVP (poly(4-vinyl phenol) organic gate dielectric, a very thin inorganic $HfO_2$ layers with the thickness of $5{\sim}20nm$ was inserted in between the spin-coated PVP layers. Insertion of the inorganic $HfO_2$ in the laminated organic/inorganic structure of PVP/$HfO_2$/PVP layer led to a dramatic reduction in the leakage current compared to the pure PVP layer. Under repetitive cyclic bending, the leakage current density of the laminated PVP/$HfO_2$/PVP layer with the thickness of 20-nm $HfO_2$ layer was not changed, while that of the single PVP layer was increased significantly. Mechanical flexibility tests of the OTFT devices by cyclic bending with 5 mm bending radius indicated that the leakage current of the laminated PVP/$HfO_2$(20 nm)/PVP gate dielectric in the device structure was also much smaller than that of the single PVP layer.