DOI QR코드

DOI QR Code

Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress

플렉서블 CIGS 태양전지의 굽힘 응력에 의한 셀 특성 변화 연구

  • Kim, Sungjun (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
  • 김성준 (청주대학교 에너지융합학과) ;
  • 김제하 (청주대학교 에너지융합학과)
  • Received : 2019.09.26
  • Accepted : 2019.11.13
  • Published : 2020.05.01

Abstract

We studied the change of photovoltaic properties of a flexible CuInxGa(1-x)Se2 (CIGS) solar cell fabricated on polyimide by mechanical bending with curvature radii of 75 mm (75R) and 20 mm (20R). The flexible CIGS cells were flattened on a PET film, then placed and forced against the surface of a curved block fabricated with pre-designed curvatures. Both up (compressive) and down (tensile) bending were applied to a specimen of CIGS on PET with curvatures of 75R and 20R for 10,000 times and 2,000 times, respectively. From J-V measurements, we found that the conversion efficiency (Eff.) was reduced by 3% and 4% for up-and down-bending, respectively, at curvature 75R; it was greatly reduced by 15% for curvature 20R in the up-bending. However, the open circuit voltage (Voc) and short-circuit current density (Jsc) seemed to change little, within 3%, for the applied mechanical stresses. The degradation in Eff. resulted from the deterioration of the series (Rs) and shunt (Rsh) resistances of the solar cell.

Keywords

References

  1. C. H. Kim, H. T. Jang, J. S. Park, J. K. Yoon, E. S. Noh, J. S. Park, and K. W. Koo, Trans. Korean Inst. Elect. Eng., 67, 448 (2018). [DOI: https://10.5370/KIEE.2018.67.3.448]
  2. K. Kim, J. Kim, M. G. Gang, S. H. Kim, S. Song, Y. Cho, D. Shin, Y. J. Eo, I. Jeong, S. K. Ahn, A. Cho, J. Kim, S. Yoon, P. P. Choi, W. Jo, J. H. Kim, J. Gwak, and J. H. Yun, Sol. Energy Mater. Sol. Cells, 195, 280 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.03.008]
  3. W. C. Tsai, S. R. Thomas, C. H. Hsu, Y. C. Huang, J. Y. Tseng, T. T. Wu, C. H. Chang, Z. M. Wang, J. M. Shieh, C. H. Shen, and Y. L. Chueh, J. Mater. Chem. A, 4, 6980 (2016). [DOI: https://doi.org/10.1039/C5TA09000H]
  4. B. J. Kim, D. H. Kim, Y. Y. Lee, H. W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y. C. Joo, K. S. Hong, N. G. Park, S. Lee, and H. S. Jung, Energy Environ. Sci., 8, 916 (2015). [DOI: https://doi.org/10.1039/C4EE02441A]
  5. A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, and S. Perraud, Thin Solid Films, 592, 99 (2015). [DOI: https://10.1016/j.tsf.2016.09.006]
  6. C. K. Cho, W. J. Hwang, K. Eun, S. H. Choa, S. I. Na, and H. K. Kim, Sol. Energy Mater. Sol. Cells, 95, 3269 (2011). [DOI: https://doi.org/10.1016/j.solmat.2011.07.009]
  7. T. F. O'Connor, A. V. Zaretski, S. Savagatrup, A. D. Printz, C. D. Wilkes, M. I. Diaz, E. J. Sawyer, and D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 144, 438 (2016). [DOI: https://doi.org/10.1016/j.solmat.2015.09.049]