• Title/Summary/Keyword: Flexible pavement

Search Result 82, Processing Time 0.026 seconds

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Prediction of Layer Rutting on Pavement Foundations Based on Stress Dependency (응력의존성을 고려한 도로기초의 층변형 예측)

  • Park Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • There are several major practical consequences of stress-dependent properties of unbound pavement foundations. Among those are the stress-dependent modulus and Poisson's ratio's that may change, the compressive stresses that are generated in materials under load, the stiffening and strengthening effect of repeated loading to progressively increase the unbound pavement materials resistance to permanent deformation. In order to study these, the algorithm for predicting deformations on conventional flexible pavements are proposed and the stress-dependent effects on layer deformation are presented in this paper by the developed stress-dependent finite element analysis program with the selected models.

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Overseas Design Introduction of Road Rehabilitation Project in Keshim~Faizabad, Afghanistan (아프가니스탄 케심-파이자베드간 도로복구사업 해외설계 사례)

  • Jeong, Dong-Ho;Kim, Woo-Sun;Kim, Gee-Baek;Jeong, Won-Joon;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.569-580
    • /
    • 2008
  • If slope height was more than 20 meters, we conducted an analysis of stereographic projection and limit equilibrium at this slope. We proposed reduction of slope face angle and reinforcement of rock bolt depending on analysis. Blasting design : Standard pattern based on result of local test blasting was made for blasting design. Vibration criterion was set for less than 3.0mm/s because of outworn buildings and inhabitants opinions. Production blasting and Controlled blasting has been done as Construction standard pattern. After Vibration Monitoring has been done, so that we can control of complement. "Bidding Document" and AASHTO 2001 "A Policy on Geometric Design of Highways and Streets" were so for design criteria of earthwork but they were different actual design criteria and left something to be desired in Afghanistan. Therefore, although "Bidding Document" and "AASHTO 2001" were basic design criteria, domestic design criteria was reflected in this design criteria for complement by discussion with supervisor. Drainage design : For stability ratio, ditch of arch block and stonework was designed by rainfall data for the 13 years and discussion with supervisor. Pavement was designed as flexible pavement. Because these days in Afghanistan postwar repair works, especially urgent repairing of roads and newly making of roads, are very highly in progress, I think that Afghanistan is the region about which our construction technical experts should have great concerns.

  • PDF

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

A Study of Reliability of Predictive Models for Permanent Deformation and Fatigue Failure Related to Flexible Pavement Design (연성포장설계의 소성변형과 피로파괴 예측모델에 대한 신뢰성 연구)

  • Kim, Dowan;Han, Beomsoo;Kim, Yeonjoo;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • PURPOSES: The objective of this paper is to select the confidential intervals by utilizing the second moment reliability index(Hasofer and Lind; 1974) related to the number of load applications to failure which explains the fatigue failure and rut depth that it indicates the permanent deformation. By using Finite Element Method (FEM) Program, we can easily confirm the rut depth and number of load repetitions without Pavement Design Procedures for generally designing pavement depths. METHODS : In this study, the predictive models for the rut depth and the number of load repetitions to fatigue failure were used for determining the second moment reliability index (${\beta}$). From the case study results using KICTPAVE, the results of the rut depth and the number of load repetitions to fatigue failure were deducted by calculating the empirical predictive equations. Also, the confidential intervals for rut depth and number of load repetitions were selected from the results of the predictive models. To determine the second moment reliability index, the spreadsheet method using Excel's Solver was used. RESULTS : From the case studies about pavement conditions, the results of stress, displacement and strain were different with depth conditions of layers and layer properties. In the clay soil conditions, the values of strain and stresses in the directly loaded sections are relatively greater than other conditions. It indicates that the second moment reliability index is small and confidential intervals for rut depth and the number of load applications are narrow when we apply the clay soil conditions comparing to the applications of other soil conditions. CONCLUSIONS : According to the results of the second moment reliability index and the confidential intervals, the minimum and maximum values of reliability index indicate approximately 1.79 at Case 9 and 2.19 at Case 22. The broadest widths of confidential intervals for rut depth and the number of load repetitions are respectively occurred in Case 9 and Case 7.

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.