DOI QR코드

DOI QR Code

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests

평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정

  • Choi, Yong-Jin (Dept. of Civil and Environmental Engrg., Pusan National Univ.) ;
  • Oh, Jeong-Ho (Dept. of Railroad Facility Engrg., Korea National Univ. of Transportation) ;
  • Han, Shin-In (R&D Center, Seoyeong Engrg. Co. Ltd.) ;
  • Ahn, Jaehun (Dept. of Civil and Environmental Engrg., Pusan National Univ.) ;
  • Shin, Hyun-Suk (Dept. of Civil and Environmental Engrg., Pusan National Univ.)
  • 최용진 (부산대학교 사회환경시스템공학과) ;
  • 오정호 (국립한국교통대학교 철도시설공학과) ;
  • 한신인 ((주)서영엔지니어링 기술연구소) ;
  • 안재훈 (부산대학교 사회환경시스템공학과) ;
  • 신현석 (부산대학교 사회환경시스템공학과)
  • Received : 2017.10.11
  • Accepted : 2017.11.01
  • Published : 2017.12.31

Abstract

Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

도심 홍수 및 물순환 왜곡을 해결하기 위한 대표적 저영향개발기술 중 하나인 투수 블록포장이 포장시설로서 활발하게 적용되고 있다. 하지만 국내의 경우 설계법이 잘 정립되어있지 않고 국외에선 AASHTO 93 연성포장 설계법을 구조설계법으로 적용하고 있긴 하나 투수성 포장재료의 상대강도계수에 대한 정보가 부족하여 다양한 재료에 대한 설계적용이 어렵다는 단점이 있다. 이에 따라 본 연구에선 평판재하시험을 통해 투수 블록포장 재료의 상대강도계수를 산정하는 방법을 제시하고, 투수성 포장 실증현장에서 평판재하시험을 실시하여 이를 산정하였다. 산정된 개립도 골재와 투수 블록포장 표층의 상대강도계수는 전체적으로 기존의 값과 유사한 경향을 나타냈다. 본 연구에서 제시한 방법을 사용하여 향후 설계를 위한 투수 블록포장 재료의 상대강도계수를 산정할 수 있을 것으로 판단된다.

Keywords

References

  1. American Association of State Highway, and Transportation Officials (1993), AASHTO Guide for Design of Pavement Structures, 1993, AASHTO, Washington D.C.
  2. American Society of Civil Engineers (2010), Structural Design of Interlocking Concrete Pavement for Municipal Streets and Roadways, ASCE, Reston, VA.
  3. Bahia, H. U., Bosscher, P. J., Christensen, J., and Hu, Y. (2000), Layer Coefficients for New and Reprocessed Asphaltic Mixes, No.WI/SPR-04-00.
  4. Han, W. S. (2011), "US Low Impact Development Applications and Implications for Urban Rainwater Management Improvements", Homeland Policy Brief, Vol.344, pp.1-6.
  5. Hansen, K. (2008), Porous Asphalt Pavements for Stormwater Management, National Asphalt Pavement Association (NAPA), NAPA, Lanham, MD.
  6. Hein, D. K., Strecker, E., Poresky, A., Roseen, R., and Venner, M. (2013), Permeable Shoulders with Stone Reservoirs, No.NCHRP 25-25 Task 82, Champaign, IL.
  7. Huang, Y. H. (2004), Pavement Design and Analysis, Pearson/Prentice Hall, Upper Saddle River, NJ.
  8. Korean Standards Association (2015), Standard Test Method for Plate Load Test on Soils for Road, KS F 2310:2015.
  9. Lee, E., Kim, G., Ahn, J., and Shin, H.-S. (2017), "Surface Infiltration Rate of Permeable Block Pavements Depending on the Size of Filling Materials", Journal of the Korean Society of Hazard Mitigation, Vol.17, No.1, pp.227-233.
  10. Ministry of Construction & Transportation (2007), Development of Eco-friendly 4S Pavement System, Final Report.
  11. Oregon Department of Transportation (2011), ODOT Pavement Design Guide.
  12. Pologruto, M. (2006), "Study of In Situ Pavement Material Properties Determined from FWD Testing", Journal of Transportation Engineering, Vol.132, No.9, pp.742-750. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:9(742)
  13. Scholz, M. and Grabowiecki, P. (2007), "Review of Permeable Pavement Systems", Building and Environment, Vol.42, No.11, pp.3830-3836. https://doi.org/10.1016/j.buildenv.2006.11.016
  14. Seoul Metropolitan City (2013), Design, Construction and Maintenance Standards of Pitcher Block Pavement, ver.2.0.
  15. Smith, D. R. (2011), Permeable Interlocking Concrete Pavements, Interlocking Concrete Pavement Institute (ICPI), Herndon, VA.
  16. Swan, D. J. and Smith, D. R. (2009), "Development of the Permeable Design Pro Permeable Interlocking Concrete Pavement Design System", 9th. International Conference on Concrete Block Paving, Argentina, pp.18-21.
  17. Zhou, H., Moore, L., Huddleston, J., and Gower, J. (1992), Free Draining Base Materials Properties, Final Report, HPR Project No.5283.