• Title/Summary/Keyword: Pavement structural design

Search Result 65, Processing Time 0.037 seconds

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

A Study on Tire Pattern & Structural Design to reduce Tire/ Concrete Noise (타이어 패턴/ 구조 설계에 대한 콘크리트 소음 기여도 연구)

  • Kim, Kunho;Kang, YoungKyu;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.611-616
    • /
    • 2013
  • Nowadays concrete pavement is increasing, since it is more durable than asphalt pavement. And the concrete pavement with lateral rain groove may induce high level of concrete whine noise as pure tone. In this paper, the design factor for good concrete whine noise is considered in view of tire pattern and structure design. In respect of tire pattern design, the tire having a cap tread with high center part stiffness and low shoulder part stiffness shows best concrete whine noise performance. And in respect of tire structural design, the tire with a thick center part of cap tread and low tread part stiffness show best concrete whine noise performance.

  • PDF

Establishment of Design Factors and Procedure for Permeable Asphalt Pavements Structural Design (투수성 아스팔트 포장 구조설계를 위한 설계인자 도출 및 설계방법에 관한 연구)

  • Yoo, Hyun Woo;Oh, Jeongho;Jung, Young Wook;Han, Shin In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.113-119
    • /
    • 2018
  • An extensive effort is actively being made to implement permeable pavement systems in urban or residential areas of South Korea in order to achieve efficient water circulation system based on low impact development (LID) design concept. This study aims to establish the design factors and procedure for permeable asphalt pavements structural design. Based on the review of previous studies, the 1993 AASHTO design method is found to be adequate for permeable pavements structural design. In this study, the design program based on 1993 AASHTO design procedure in conjunction with domestic roadway design standards was developed to accommodate the characteristics of permeable asphalt pavements. Primary design parameters such as structural layer coefficients of permeable materials were successfully quantified based on literature reviews and parallel analyses. Comparable design thicknesses were obtained between the developed permeable pavement design (PPD) program and Korea pavement research program (KPRP) under different levels of traffic and subgrade load bearing capacity.

Finite Element Analysis of Structural Performance of Anti-Freezing Layer via the Korea Pavement Research Program (한국형포장설계프로그램 및 유한요소해석을 이용한 동상방지층의 구조적 성능 평가)

  • Kim, Dowan;Lee, Junkyu;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.

A Method for Customizing Flexible Pavement Design Parameters for EDCF-Funded Projects in Asia (아시아 지역 EDCF 사업의 가요성포장 설계 계수 적용방안)

  • Shim, Cha-Sang;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2017
  • PURPOSES : One of the main components of road projects funded by the Economic Development Cooperation Fund (EDCF) is the improvement or rehabilitation of existing pavements. The result is that pavement structures are critical to the success of a project. There is, however, no design standard available at present that reflects a region's specific features including climate conditions and quality of pavement materials. For this reason, a comparative study of the major EDCF borrowers' flexible pavement design standards was conducted. This study led to the proposal of a new method for applying flexible pavement designs which can be used for EDCF-funded projects in Asia. METHODS : The method has been produced by adjusting some input data of the "AASHTO Interim Guide for Design of Pavement Structures" in accordance with certain Asian countries' geometrical features, tropical and subtropical weather, and strength of pavement materials. The Philippine regional factors, having five different grades, have been selected after taking into consideration the amount of rainfall, strength of pavement materials, and characteristics of the Asia and Pacific regions. Structural layer coefficients have been prepared for two different regions according to the geometric difference between Southeast and Southwest Asia. The Philippine and Sri Lankan coefficients have been used for Southeast Asia and Southwest Asia, respectively. CONCLUSIONS : Owing to applying this new method, it was verified that the thickness of the pavement was underestimated by between 11 cm and 16 cm compared with the originally designed thickness. Having discovered that the use of the Korean and American-oriented factors and coefficients is not appropriate for other Asian countries, the new method is expected to enhance the quality of pavement in future projects.

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

A Study on Life Cycle Cost Analysis of Latex Modified Concrete Pavement for Bridges (LMC 교면 포장 공법의 생애주기비용분석에 관한 연구)

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Jung, Pyoung-Ki;Lim, Jong-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.185-195
    • /
    • 2001
  • Latex Modified Concrete(LMC) has been widely used for the pavement of highway bridges over the past 35years around the world since it is more resistant to the intrusion of chloride ions, has higher tensile, compressive, and flexural strength, and has greater freeze-thaw resistance. However, in Korea, it has not been introduced to fields due to higher initial construction cost for its overlay compared with that of conventional pavement materials. Due to durable characteristics, it should be noted that the LMC may be more cost-effective than conventional pavements such as asphalt pavement, when life-cycle cost(LCC) concept is considered. The objective of this study is intended to suggest a practical LCC analysis model for pavement projects and to demonstrate relative cost-effectiveness of the LMC overlays in comparison with conventional pavement techniques. It may be stated that the procedure proposed in this study may be utilized for making optimal decision on cost-effective pavement design.

  • PDF

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Structural and Fatigue Analysis for soil-Cement Stabilized Base and Subbase of Road (Soil-cement 안정처리 도로 기층 및 보조기층의 구조 및 피로해석)

  • 도덕현;조래청
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.43-50
    • /
    • 1993
  • It has been past for many years that soil-cement used in the field of roadway pavement in America and Europe. Though the design and construction criteria on soil-cement pavement have been well setablished in Korea's specificaions, this method has not been applied in roadway pavements, in practices. It is mainly caused by the lacks of experiences in soil-cement pavement design and construction. In this study, the problems of soil-cement pavement in use were explored, and the structure and fatigue like of soil-cement bases and subbases were estimated.

  • PDF