• Title/Summary/Keyword: Fire-resistance

Search Result 1,039, Processing Time 0.026 seconds

Structural performance of unprotected concrete-filled steel hollow sections in fire: A review and meta-analysis of available test data

  • Rush, David;Bisby, Luke;Jowsey, Allan;Melandinos, Athan;Lane, Barbara
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.325-350
    • /
    • 2012
  • Concrete filled steel hollow structural sections (CFSs) are an efficient, sustainable, and attractive option for both ambient temperature and fire resistance design of columns in multi-storey buildings and are becoming increasingly common in modern construction practice around the world. Whilst the design of these sections at ambient temperatures is reasonably well understood, and models to predict the strength and failure modes of these elements at ambient temperatures correlate well with observations from tests, this appears not to be true in the case of fire resistant design. This paper reviews available data from furnace tests on CFS columns and assesses the statistical confidence in available fire resistance design models/approaches used in North America and Europe. This is done using a meta-analysis comparing the available experimental data from large-scale standard fire tests performed around the world against fire resistance predictions from design codes. It is shown that available design approaches carry a very large uncertainty of prediction, suggesting that they fail to properly account for fundamental aspects of the underlying thermal response and/or structural mechanics during fire. Current North American fire resistance design approaches for CFS columns are shown to be considerably less conservative, on average, than those used in Europe.

A study for the test method of fire resistance construction sealant (방화용 실런트 성능 평가 방법 연구)

  • Ahn, Myung-Su;Jung, Jin-Young;Bae, Ki-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.179-182
    • /
    • 2013
  • Many kinds of fire-stop sealants have been used for joint sealing, cable penetration part sealing and fireproof structure finishing etc in building sectors which need water-proofing and fire-stop properties. But, fire-stop sealant itself has no specific industry standards in Korea even though there are so many required properties for the application. So, in this study, for the evaluation, we adopted and applied UL standard 94(UL 94) which is commonly used for the fire retardant testing in inflammable materials like plastics and rubbers in electronics industry. In this study, we demonstrated fire resistance properties of each fire-stop sealants which varied with different formulation, thickness and origins available in Korea. Overall, fire stop sealant had better fire resistance performance than normal construction sealant. And the thicker the material, the better the fire resistance performance was. Because there is no national or industry guideline for fire stop sealant itself, each sealant products showed different level of performances under UL94 desigation. Even certain product had very poor fire proof propeties although it claims it can be used for the application.

  • PDF

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

Establishment of Fire Reliability Assessment Method for Structural Strength (화재시 구조강도에 대한 신뢰성 평가방법의 정립)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.54-62
    • /
    • 2017
  • This paper describes the behavior and failure probability of the basic structural members in a fire for the fire safety assessment of offshore structures. A fire safety assessment can be accomplished by comparing the fire resistance of the members with the fire severity of the heat load due to fire. The fire severity is represented as the maximum temperature of the members using the Eurocode 1 standard fire curve and heat transfer equation. On the other hand, the fire resistance is the limiting temperature calculated by a simplified formula in the case of simple structural members. Considering the complexity of FPSOs and offshore structures, a general-purpose structural analysis program should be used and the limiting temperature obtained by analyzing the structural strength of the members through an elasto-plastic analysis with a large deflection, and compared with the maximum temperature. Also, the equality of these two methods of evaluating the fire resistance was confirmed by comparing them. Following three criteria, the strength, serviceability and stability, three failure modes, namely the first failure of a hinge, large deflection and buckling, were chosen. The failure temperature was verified for each failure mode. using the AFOSM method in the equation of the fire severity and fire resistance, thereby giving the failure probability of the member. By applying these processes to the example of a beam and plate, the behavior of the structure and failure (temperature?) of each failure mode can be determined.

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

An Investigation on Fire Resistance Design of Tunnel Structures (주요 터널화재 사고사례 분석 및 국내 터널구조물 내화설계법 고찰)

  • Han, Sang-Hoon;Kim, Min-Suk;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.341-344
    • /
    • 2008
  • By investigating a series of catastrophic tunnel fires, this research aims to evaluate the fire resistance design method as applied to tunnel structures in Korea. It is shown that the current strategy is oriented towards smoke control and ventilation to reduce the loss of life. As structural collapse is not regarded, a general guide is proposed to obtain the fire safety.

  • PDF

Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models (증기압 및 크리프 모델을 사용한 고강도콘크리트 부재의 내화성능평가)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-40
    • /
    • 2010
  • A numerical model considering the vapor pressure and the creep models, in the form of a analytical program, for tracing the behavior of high strength concrete (HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

Fire resistance of high strength fiber reinforced concrete filled box columns

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.611-621
    • /
    • 2017
  • This paper presents an investigation on the fire resistance of high strength fiber reinforced concrete filled box columns (CFBCs) under combined temperature and loading. Two groups of full-size specimens were fabricated. The control group was a steel box filled with high-strength concrete (HSC), while the experimental group consisted of a steel box filled with high strength fiber concrete (HFC) and two steel boxes filled with fiber reinforced concrete. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The test results show that filling fiber concrete can improve the fire resistance of CFBC. Moreover, the configuration of longitudinal reinforcements and transverse stirrups can significantly improve the fire resistance of CFBCs.

Fire Performance of 100MPa High Strength Concrete with Fire Protection Cover (100MPa급 내화피복 고강도 콘크리트의 내화성능 인증)

  • Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.21-22
    • /
    • 2010
  • In this research, the purpose is to share fire resistance method to secure 3 hours fire resistance performance which is regulation noticed by Ministry of Land, Transport and Maritime Affairs for 100MPa high strength concrete which is predicted to apply to high rise building and to propose the guideline for confirmation of fire resistance performance of high strength concrete member to which fire resistance method is applied and field application in advance.

  • PDF

Experimental Study on Fire Resistance Performance of CFT (Concrete filled Tube) Column according to Cross Section of Steel, Concrete Compressive Strengths and Load Ratios (강관의 크기, 축력비 및 콘크리트 압축강도 변화에 따른 CFT 기둥부재의 내화성능에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Min, Byung-Yeol;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.104-111
    • /
    • 2010
  • The strength of steel in a concrete filled steel tube (CFT) is reduced in a fire, but the concrete filled structurally ensures the fire resistance due to its high thermal capacity. This research analyzed the fire resistance performance due to the variances of concrete strength filled inside of steel tube and the load ratios, which can influence on the fire resistance of CFT. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the fire resistance used to 24 MPa concrete showed 27, 113, and 180 minutes according to the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of fire resistance with 40 MPa concrete showed the much lower fire resistance performance than those of 24 MPa concrete. In case of 40 MPa, the fire resistance performance was not increased significantly according to the axial load ratio than that of 24 MPa. The main reason why the higher concrete strength showed lower fire resistance than that of lower guessed the internal stress had the concrete strength weak.