• Title/Summary/Keyword: Fire-protection foam

Search Result 32, Processing Time 0.023 seconds

A Study on Fire Extinguishing Performance Evaluation of Compressed Air Foam System (압축공기포 소화설비의 소화성능 평가에 관한 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Kim, Sung-Soo;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.73-78
    • /
    • 2012
  • This research is to evaluate the fire extinguishing performance of Compressed Air Foam System and this test was conducted using Foam Head System. Compressed Air Foam System adopt the methods of causing the foam by mixing compressed air in foam-aqueous solution, In Overseas, CAFS (Compressed Air Foam System) is generally used because long distance discharge is possible and the water damage can be minimized by reducing the water usage. In this study, Comparative analysis on fire extinguishing effect is done through test to compare the performance between Foam System applied existing air mixture method and Compressed Air Foam System applied AFFF 3 %, foam-extinguishing-agent based on UL162 standard. In Compressed Air Foam System, the volume proportion of air mixture to foam-aqueous solution is 1 to 1 and discharging flow rate is 140 L/min, 160 L/min, 180 L/min, 200 L/min each. As a result of the test, in terms of fire extinguishing performance, fire suppression time for Compressed Air Foam Systems is shorter than for General Air Mixture System in all flow conditions.

A Study on B Class Fire Extinguishing Performance of Air Ratio in the Compressed Air Foam System (압축공기포 소화설비의 공기포비에 따른 B급 소화성능 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • This research is to evaluate the fire extinguishing performance at a mixing ratio of pressurized air in the fire extinguishing system of compressed air foam (CAF) which injects compressed air into foam liquid and then discharging. The experimental device is made use of exclusive foam extinguishing facility for compressed air foam that is produces based on Canada National Laboratory and UL 162 standard, apply model of oil fire (B Class) 20 unit in accordance with "Standard of Model Approval and Product Inspection for Fire Extinguishing Agent" to the fire Extinguishing model. Compressed air is injected through the air mixture and study the tendency depending on increasing air foam ratio 1 : 4, 1 : 7, 1 : 10. In addition, the comparison experiments between synthetic surfactants foam and AFFF carry out with it at the air foam ratio 1 : 4. As a result, in the condition of same discharging flow, fire extinguishing effect of AFFF is the fastest at the air foam ratio 1 : 7 and the slowest at 1 : 10. Moreover, the fire extinguishing effect of AFFF in the comparison expeiments between AFFF and synthetic surfactants foam is faster than the other.

A Study on Tool Offset for Cutting of the Polyurethane Foam (폴리우레탄폼 절삭가공시 공구보정에 관한 연구)

  • Min, Se-Hong;Kim, Hei-Song
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • After constructing master model utilizing CAD data originated by sketch, product NC data for polyurethane foam using digitized master model data. And model cutting is performed utilizing specially developed polyurethane foam cutting tool in machining center. In this study, it is discussed to construct concept of tool offset, method of tool offset and feature tolerance, etc., that is impossible for cutting of the polyurethane foam by CNC machine.

  • PDF

위험관리정보 - 산업용 포(Foam) 소화 시스템

  • Jeong, Jeong-Ho
    • 방재와보험
    • /
    • s.115
    • /
    • pp.44-48
    • /
    • 2006
  • 수십 년 동안 포소화 시스템은 산업용 소화 시스템으로 사용되고 있으나 올바른 포소화 시스템을 선택하기 위해서는 반드시 확인해야 할 것들이 있다. 매우 복잡한 포소화 시스템을 설계하고 생산하고 있는 Tycp Fire and Security's Fire Suppression Group의 포 제품 생산 매니저인 Peter Kristenson은 포소화 시스템을 선택할 때 고려해야 할 요소와 최근에 시판되고 있는 포 소화약제를 조사하였다.

  • PDF

[Retracted]Improving Performance of Foam Proportioner Utilizing Metering Venturi Type ([논문철회]미터링 벤츄리를 이용한 포소화약제 혼합장치의 성능개선)

  • Joo, Seung-Ho;Kong, Ha-Sung;Gong, Ye-Som
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.48-52
    • /
    • 2015
  • In this study, we have evaluated whether the mixing ratio is proper by creating a mixing device for foam proportioner that mainly is employed in practice utilizing a metering venturi type. In case of the mixing ratio for 3%, water under pressure of 76 mm in diameter and the original liquid of a foam fire extinguishing agent of 31.75 mm in diameter have showed up the fluctuation rate just as much as 3.1~3.5% of the mixing ratio. Because water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have showed up 3.3~3.7% of the fluctuation rate, water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have satisfied 3.0~3.9% of performance criterion. And also, in case of the 6% of mixture rate, water under pressure of 76.2 mm in diameter and the original liquid of a foam fire extinguishing agent of 31.75 mm in diameter have showed up the fluctuation rate just as much as 6.4~6.8% of the mixing ratio. Because water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have showed up 6.0~6.8% of the fluctuation rate, water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have satisfied 6.0~7.0% of performance criterion.

A Study on Fire Hazards in Multiple Compartments with Lightweight Partition Walls (경량칸막이 벽체를 통한 다중구획공간에서의 화재위험성에 관한 연구)

  • Park, Sang-Min;Choi, Su-Gil;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.14-21
    • /
    • 2020
  • This paper presents the study of a fire risk to the backside of two miniatures of ISO 9705 2/5 using a lightweight partition for indoor space division and reproduction of the ISO 9705 test. An SGP partition, stud partition, glass wool panel, urethane foam panel, sandwich panel, and glass partition were selected as the test specimens, which are frequently used in construction. According to the ISO 9705 test standard, stabilization was achieved using a measuring device that recorded data before the ignition of a burner and continued recording for 120 s thereafter. After ignition was achieved, the power was increased to 300 kW for 600 s and then reduced to 100 kW for 600 s. The specimens were subsequently observed for 180 s, and the fire risk to the backside and the fire pattern of the wall unit were analyzed. Owing to the amount of heat generated by the ignition source, the maximum temperature of the backside was observed to be 67.7 ℃ for the SGP partition, 55.1 ℃ for the stud partition, 52.4 ℃ for the glass wool panel, 727.4 ℃ for the sandwich panel, 561 ℃ for the urethane foam panel, and 630.5 ℃ for the glass partition. In the cases of the sandwich and urethane foam panels, the explosion of flammable gas occurred by virtue of fusion of the interior materials. The reinforced glass was fractured owing to the temperature difference between the heat- and nonheat-responsive parts. Ultimately, the fire risk to the nearby section room was deemed to be high.

Fire Risk Rating Evaluation of Organic Insulation Materials (유기 단열재의 화재위험성 등급 평가)

  • You, Ji Sun;Jeon, Nam;Chung, Yeong-jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.417-422
    • /
    • 2021
  • In this study, poly isocyanurate foam (PIR), poly urethane foam (PUR), and phenol foam (PF) of organic insulation materials were selected, and investigated using a cone calorimeter, as per ISO 5660-1. Standard materials (PMMA) were used to standardize the fire hazard assessment, and the fire risk was classified and evaluated by Chung's equations-III and IV. The fire performance index-II value of Chung's equations-II was the highest value with PF of 14.77 s2/kW. And the PUR was 0.08 s2/kW, the lowest value of fire performance index-II value. The fire growth index-II value was the lowest value with PF of 0.01 kW/s2. And the PUR was 1.14 kW/s2, the highest value of fire growth index-II value. The fire performance index-III (FPI-III) of Chung's equations-III had the lowest value for PUR (0.11) and the highest for PF (20.23). The PUR showed the highest value of the fire growth index-III (FGI-III) as 14.25, while the PF exhibited 0.13 regarded as the safest materials. The fire risk index-IV (FRI-IV) value of Chung's equation-IV was in the following order: PUR (130.03) >> PIR (19.13) > PMMA (1.00) > PF (0.01). Therefore, it was concluded that the fire risk associated with PF is the lowest, whereas that associated with PUR is the highest.

A Study on the Firefighting Equipment in Petrochemical Plants (석유화학공장의 소화설비에 관한 연구)

  • Kim, Bong-Hoon;Choi, Jae-Wook;Lim, Woo-Sub
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.14-22
    • /
    • 2014
  • Hydrocarbon fires and explosions in petrochemical plants have occurred repeatedly every year. But domestic law of fire protection system is insufficient for the worst case scenario. In this study, we analyzed domestic and foreign standards of fire protection system in petrochemical plants and surveyed firefighting equipment of 32 petrochemical plants in ulsan petrochemical complex. Finally, it is necessary to design fire water supply based on the worst case scenario in petrochemical plants and firefighting equipment such as fixed water spray system, elevated monitor nozzle, water curtain, large amount foam monitor system should be installed for the worst case scenario in petrochemical plants.

Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire (고양종합터미널화재 시 소방시설의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.95-107
    • /
    • 2018
  • This study analyzed the working conditions of the fire protection system in the Goyang Bus Terminal fire based on the fire investigation results. The results were as follows. First, extinguishing using an indoor fire hydrant was not attempted immediately after the fire burned the ceiling urethane foam. Second, a sprinkler alarm valve was turn off and did not work in the repair work space of the 1st basement. On the other hand, the sprinklers in the $2^{nd}$ basement, $1^{st}$ floor, $2^{nd}$ floor, and $3^{rd}$ floor worked and prevented the fire from moving to stories other than the $1^{st}$ basement. Third, although an exit light worked normally, it was not installed in the exit from the waiting room in the $2^{nd}$ floor to the bus stop. This resulted in many casualties. Fourth, although a fire receiver sent an electrical signal to the fan controller of the smoke control system, it was treated manually in the fan controller and the fan in the $2^{nd}$ floor did not work.