• Title/Summary/Keyword: Fire analysis

Search Result 3,402, Processing Time 0.027 seconds

Analysis for the Thermal Properties of the Electrical Wire according to Overload and Disconnection (과부하 및 물리적 손상(반단선)에 의한 전선의 열적특성 해석)

  • Kim, Sung-Chul;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2007
  • According to the statistical analysis on the electrical fire of 2005 years, most of electrical fire is generated from short circuit(4,985 cases), overcurrent(755 cases) leakage current(391 cases), poor contact(378 cases), disconnection(36 cases) on the electrical wiring device. The researches for the fire hazard about normal electric wiring have already been progressing in the advanced country such as USA and Japan, but Comparative study of the disconnection has not been conducted. Therefore, in this paper, we have simulated the thermal analysis for electrical wire according to deteriorating time in a normal state and disconnection with electrical wire using the electrical-thermal finite element method(Flux 3D). This paper acquire basis data of electricity fire signal by disconnection and wish to help for electrical fire cause diagnosis business.

Formulation of Fire Reliability Assessment Method for Structural Strength (화재 구조강도에 대한 신뢰성 평가방법의 정립)

  • 양영순;유원선;이상엽
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.161-168
    • /
    • 2004
  • This study describes the behavior and failure probability of basic structural member in case of fire for the research of safety assessment on onshore structure. Fire safety assessment can be done by comparing fire resistance of members with fire severity of heat load For more Practical applications, the commercial structural analysis program is linked with the in-house code and gets the limiting temperature by analyzing structural strength of member with elasto-plastic analysis and large deflection analysis. AFOSM method is utilized to obtain the failure probability against the fire. The examples of rather simple structures such as beams and plates are applied to explain and verify the procedure of fire safety assessment.

  • PDF

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.

Flame Color, Spatial and Temporal Characteristic Analysis of Color Fire Images (컬러 화재영상의 화염 색상 및 시공간적 특성 분석)

  • Hwang, Jun-Cheol;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 2011
  • This paper presents a fire detection criterion based on flame color, spatial and temporal characteristic analysis of color fire images. To propose the criterion, Firstly the fire candidate regions were selected by using analyzed Cr and Y threshold value, and then texture analysis of candidate regions was performed by using DCT. Finally variation of Y values of these regions was calculated for temporal analysis. The proposed fire detection criterion was simulated by using fifteen test images and practicality was verified.

Quantitative Analysis on the Electrical Fire Preventive Effect of Safety Inspection for Electrical Facilities for General Use (일반용 전기설비 안전점검의 전기화재 예방효과에 대한 정량적 분석)

  • Kim, Taek-Hee;Yoo, Jae-Geun;Jeon, Jeong-Chay
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • This paper presents a quantitative analysis method to quantitatively indicate a electrical fire preventive effect of safety inspection for electrical facilities for general use. Logic model was developed based on whether enforcement of safety inspection for electrical facilities, and then the developed analysis model was converted to hydraulic model by using mathematical logic. The electrical fire preventive effect of safety inspection for electrical facilities was quantitatively calculated by applying electrical safety inspection results and fire statistics for five years to the developed hydraulic model. The results show that electrical fire preventive effects of 5,542 cases on annual average for five years.

Structural performance of unprotected concrete-filled steel hollow sections in fire: A review and meta-analysis of available test data

  • Rush, David;Bisby, Luke;Jowsey, Allan;Melandinos, Athan;Lane, Barbara
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.325-350
    • /
    • 2012
  • Concrete filled steel hollow structural sections (CFSs) are an efficient, sustainable, and attractive option for both ambient temperature and fire resistance design of columns in multi-storey buildings and are becoming increasingly common in modern construction practice around the world. Whilst the design of these sections at ambient temperatures is reasonably well understood, and models to predict the strength and failure modes of these elements at ambient temperatures correlate well with observations from tests, this appears not to be true in the case of fire resistant design. This paper reviews available data from furnace tests on CFS columns and assesses the statistical confidence in available fire resistance design models/approaches used in North America and Europe. This is done using a meta-analysis comparing the available experimental data from large-scale standard fire tests performed around the world against fire resistance predictions from design codes. It is shown that available design approaches carry a very large uncertainty of prediction, suggesting that they fail to properly account for fundamental aspects of the underlying thermal response and/or structural mechanics during fire. Current North American fire resistance design approaches for CFS columns are shown to be considerably less conservative, on average, than those used in Europe.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Study of Post-Fire Safe-Shutdown Analysis of a CANDU Main Control Room based on NEI 00-01 Methodology (NEI 방법론을 적용한 중수로 주제어실의 화재안전정지분석에 관한 연구)

  • Kim, In-Hwan;Lim, Heok-Soon;Bae, Yeon-Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • When the fire takes place in Nuclear Powr Plants(NPPs), the reactor should achieve and maintain safe shut-down conditions and minimize the radioactive material released to the environment. The U.S. Nuclear Regulatory Commission (NRC) has issued numerous generic communications related to fire protection over the past 20 years, after it issued its requirements in the Fire Protection Rule set forth in Title 10, Section 50.48 of the Code of Federal Regulations (10 CFR 50.48) and Appendix R to the 10 CFR 50. The and Nuclear Energy Institute (NEI) has developed a Methodology for Risk Informed Fire Safe-Shutdown Analysis, which is related to the Deterministic Method for Multiple Spurious Operations solutions. The aim of this study was to identify, achieve, and maintain Post-Fire Safe-Shutdown of the Main Control Room (MCR) of the CANDU reactor, even though one train of the multiple Safety Structures, Systems, and Components (SCCs) fail by the technical specification and analysis method.

Study on the Risk Analysis of Complex Electrical Fire by the Partial Disconnection and Tracking (반단선과 트래킹에 의한 복합적 전기화재의 위험성분석 연구)

  • Park, Sang-Min;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.111-118
    • /
    • 2017
  • The present paper is a study on the risk analysis of complex electrical fire by the partial disconnection and tracking. First, in order to analysis the single cause of electrical fire risk by the partial disconnection, the thermal characteristic has been measured by the change in the number of strands and the rated current of a wire. And then, in order to analysis the electrical fire risk by complex cause, an experiment on the accelerated tracking has been carried out in a condition of partial disconnection and confirmed the fire relation between partial disconnection and tracking. From the experiment, if the partial wire disconnection acts as a single cause, the existing thermal characteristics generated by the flowing current has appeared more clearly by the increase in the flowing current due to the complex action of tracking. Accordingly, the disconnection of strands has appeared by the complex cause due to the drastic temperature increase which was not generated in the single cause. Namely, it has been confirmed that if the partial disconnection and tracking act complexly rather than the risk of electrical fire by the existing partial disconnection, relatively its risk has been increased in large.

Analysis of the Working Conditions of Screen Fire Shutters in the Goyang Bus Terminal Fire (고양종합터미널화재 시 스크린방화셔터의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.82-91
    • /
    • 2018
  • This study analyzed the working conditions and problems of screen fire shutters in the Goyang Bus Terminal fire based on the fire investigation results. At that time, screen fire shutters in the 1st basement, which was under construction, did not work because the power was shut off. Four screen fire shutters in the 1st and 3rd floor did not work despite the power not being shut off. The following problems related to a screen fire shutter were found: shutting off the power to screen fire shutters for the fire compartment on each floor, even when the fire compartments were changed in each area; installing an integral type screen fire shutter without any regulations, installing a two-stage screen fire shutter in a place not related to obstacles during evacuation; stopping the function of the screen fire shutters for a fire compartment on each floor after a combustible sandwich panel was comparted; installing a screen fire shutter over 10 meters in width, in which its performance was not verified; and no safety control standards for reinstalling or maintaining a screen fire shutter.