DOI QR코드

DOI QR Code

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang (School of Highway, Chang'an University) ;
  • Zhang, Gang (School of Highway, Chang'an University) ;
  • Kodur, Venkatesh (Department of Civil and Environmental Engineering, Michigan State University) ;
  • He, Shuanhai (School of Highway, Chang'an University) ;
  • Huang, Qiao (School of Transportation, Southeast University)
  • Received : 2020.06.10
  • Accepted : 2021.03.04
  • Published : 2021.03.25

Abstract

This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Keywords

References

  1. Ahn, J.K., Lee, C.H. and Park, H.N. (2013), "Prediction of fire resistance of steel beams with considering structural and thermal parameters", Fire Saf. J., 56, 65-73. http://doi.org/10.1016/j.firesaf.2013.01.002.
  2. Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A. and Rinaudo, P. (2017), "Valencia bridge fire tests: Experimental study of a composite bridge under fire", J. Constr. Steel. Res., 138, 538-554. http://doi.org/10.1016/j.jcsr.2017.08.008.
  3. ANSYS (2013), ANSYS Metaphysics (Version 15.0), ANSYS Inc., Canonsburg, Pennsylvania, U.S.A.
  4. ASTM E119 (2012), Standard test methods for fire tests of building construction and materials, American National Standards Institute; U.S.A.
  5. Aziz, E.M. and Kodur, V.K.R. (2013), "An approach for evaluating the residual strength of fire exposed bridge girders", J. Constr. Steel. Res., 88, 34-42. http://doi.org/10.1016/j.jcsr.2013.04.007.
  6. Aziz, E.M., Kodur, V.K.R., Glassman, J.D. and Garlock, M.E.M. (2015), "Behavior of steel bridge girders under fire conditions", J. Constr. Steel. Res., 106, 11-22. http://doi.org/10.1016/j.jcsr.2014.12.001.
  7. Chan, S.L. and Chan, B.H.M. (2001), "Refined plastic hinge analysis of steel frames under fire", Steel Compos. Struct., 1(1), 111-130. https://doi.org/10.12989/scs.2001.1.1.111.
  8. Dwaikat, M.M.S. and Kodur, V.K.R. (2011), "Engineering approach for predicting fire response of restrained steel beams", J. Eng. Mech., 137(7), 447-461. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000244.
  9. Dwaikat, M.M.S. and Kodur, V.K.R. (2011), "A performance based methodology for fire design of restrained steel beams", J. Constr. Steel. Res., 67(3), 510-524. http://doi.org/10.1016/j.jcsr.2010.09.004.
  10. Eurocode 1 (2002), Actions on structures. Part 1-2: General action-Action on structures exposed to fire, European Committee for Standardization; Brussels, Belgium.
  11. Eurocode 2 (2004), Design of concrete structures. Part 1-2: General rules-Structural fire design, European Committee for Standardization; Brussels, Belgium.
  12. Eurocode 3 (2005), Design of steel structures. Part 1-2: General rules-Structural fire design, European Committee for Standardization; Brussels, Belgium.
  13. Garlock, M.E.M., Paya-Zaforteza,I., Kodur, V.K.R. and Gu, L. (2012), "Fire hazard in bridges: Review, assessment and repair strategies", Eng. Struct., 35, 89-98. https://doi.org/10.1016/j.engstruct.2011.11.002.
  14. Glassman, J.D., Garlock, M.E.M., Aziz, E.M. and Kodur, V.K.R. (2016), "Modeling parameters for predicting the postbuckling shear strength of steel plate girders", J. Constr. Steel. Res., 121, 136-143. http://doi.org/10.1016/j.jcsr.2016.01.004.
  15. ISO 834 (1999), Fire Resistance Tests-Elements of Building Construction. Part 1: General requirements, International Standard Organization; Genva, Switzerland.
  16. JTG D60-2015 (2015), General Specifications for Design of Highway Bridges and Culverts, Ministry of Transport of the People's Republic of China; Beijing, China.
  17. Kodur, V.K.R., AZiZ, E.M. and Dwaikat, M.M.S. (2012), "Evaluating fire resistance of steel girders in bridges", J. Bridge Eng., 18(7), 633-643. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000412.
  18. Kodur, V.K.R. and Dwaikat, M.M.S. (2010), "Effect of high temperature creep on the fire response of restrained steel beams", Mater. Struct., 43(10), 1327-1341. http://doi.org/10.1617/s11527-010-9583-y.
  19. Kodur, V.K.R., Dwaikat, M.M.S. and Fike, R. (2010), "High-temperature properties of steel for fire resistance modeling of structures", J. Mater. Civ. Eng., 22(5), 423-434. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000041.
  20. Kodur, V.K.R. and Naser, M.Z. (2013), "Importance factor for design of bridges against fire hazard", Eng. Struct., 54, 207-220. http:// doi.org/10.1016/j.engstruct.2013.03.048.
  21. Kodur, V.K.R. and Naser, M.Z. (2014), "Effect of shear on fire response of steel beams", J. Constr. Steel. Res., 97, 48-58. http://doi.org/10.1016/j.jcsr.2014.01.018.
  22. Kodur, V.K.R. and Naser, M.Z. (2015), "Effect of local instability on capacity of steel beams exposed to fire", J. Constr. Steel. Res., 111, 31-42. http://doi.org/10.1016/j.jcsr.2015.03.015.
  23. Kodur, V.K.R. and Naser, M.Z. (2018), "Approach for shear capacity evaluation of fire exposed steel and composite beams", J. Constr. Steel. Res., 141, 91-103. https://doi.org/10.1016/j.jcsr.2017.11.011.
  24. Kodur, V.K.R. and Naser, M.Z. (2019), "Designing steel bridges for fire safety", J. Constr. Steel. Res., 156, 46-53. https://doi.org/10.1016/j.jcsr.2019.01.020.
  25. Kodur, V.K.R., Naser, M.Z., Pakala, P. and Varma, A. (2013), "Modeling the response of composite beam-slab assemblies exposed to fire", J. Constr. Steel. Res., 80, 163-173. http://doi.org/10.1016/j.jcsr.2012.09.005.
  26. Li, G.Q., Ding, J. and Sakumoto, Y. (2005), "A practical approach for fire safety design of fire-resistant steel members", Steel Compos. Struct., 5(1), 71-86. https://doi.org/10.12989/scs.2005.5.1.071.
  27. Naser, M.Z. and Kodur, V.K.R. (2016), "Factors governing onset of local instabilities in fire exposed steel beams", Thin-Walled Struct., 98, 48-57. http://doi.org/10.1016/j.tws.2015.04.005.
  28. Naser, M.Z. and Kodur, V.K.R. (2017), "Comparative fire behavior of composite girders under flexural and shear loading", Thin-Walled Struct., 116, 82-90. http://doi.org/10.1016/j.tws.2017.03.003.
  29. Nguyen, T.T., Tan, K.H. and Burgess, I.W. (2015), "Behaviour of composite slab-beam systems at elevated temperatures: Experimental and numerical investigation", Eng. Struct., 82, 199-213. http://doi.org/10.1016/j.engstruct.2014.10.044.
  30. Paya-Zaforteza, I. and Garlock, M.E.M. (2012), "A numerical investigation on the fire response of a steel girder bridge", J. Constr. Steel. Res., 75, 93-103. http://doi.org/10.1016/j.jcsr.2012.03.012.
  31. Song, C.J., Zhang, G., Hou, W. and He, S.H. (2020), "Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure", Adv. Struct. Eng., 23(8), 1521-1533. https://doi.org/10.1177/1369433219898102.
  32. Wang, Y.C. and Yin, Y.Z. (2006), "A simplified analysis of catenary action in steel beams in fire and implications on fire resistant design", Steel Compos. Struct., 6(5), 367-386. https://doi.org/10.12989/scs.2006.6.5.367.
  33. Ye, Z.N., Jiang S.C., Heidarpour, A., Li, Y.C. and Li, G.Q. (2019), "Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire", Steel Compos. Struct., 30(4), 351-364. https://doi.org/10.12989/scs.2019.30.4.351.
  34. Yu, H.X. and Liew, J.Y.R. (2004), "Moment curvature method for fire safety design of steel beams", Steel Compos. Struct., 4(3), 227-246. https://doi.org/10.12989/scs.2004.4.3.227.
  35. Zhang, G., Kodur, V.K.R., Song, C.J., He, S.H. and Huang, Q. (2020), "A numerical model for evaluating fire performance of composite box bridge girders", J. Constr. Steel. Res., 165, 105823. https://doi.org/10.1016/j.jcsr.2019.105823.
  36. Zhang, G., Kodur, V.K.R., Yao, W.F. and Huang, Q. (2019), "Behavior of composite box bridge girders under localized fire exposure conditions", Struct. Eng. Mech., 69(2), 193-204. https://doi.org/10.12989/sem.2019.69.2.193.
  37. Zhang, G., Song, C.J., Li, X.Y., He, S.H. and Huang, Q. (2021), "Fire performance of continuous steel-concrete composite bridge girders." KSCE J. Civ. Eng., 25(3), 973-984. https://doi.org/10.1007/s12205-021-0985-x.
  38. Zhang, G., Zhu M.C., Kodur, V.K.R. and Li, G.Q. (2017), "Behavior of welded connections after exposure to elevated temperature", J. Constr. Steel. Res., 130, 88-95. https://doi.org/10.1016/j.jcsr.2016.12.004.