• Title/Summary/Keyword: Fire Power Potential

Search Result 41, Processing Time 0.024 seconds

A Study on the Deteriorated Cause Analysis of Mold Type Potential Transformer (몰드형 계기용 변압기의 소손원인 해석에 관한 연구)

  • Choi, Chung-Seog;Kim, Hyug-Soo;Shong, Kil-Mok;Kim, Hyung-Rae;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1557-1559
    • /
    • 2000
  • In this paper, we intend to establish the judgement of electrical fire through analysis of PT(Potential Transformer) using the power installation. The columnar structure and the void generated by abrupt heat grew at the tenter of boundary-face on the metallurgical microscope analysis. The detection of OK lines was confirmed by EDX(Energy Dispersive X-ray spectroscopy) as melting and recombination due to the layer-short of the wiring. We found that the thermal-weight decrease occurred at 300$^{\circ}C$ in case of being the thermal-deterioration on the base of the result that analyzed the insulated-materials by using TGA, and the thermal reaction limited-value of PT insulator was about 300$^{\circ}C$ on the DSC curve. As this analysis, we confirmed what the layer-short appeared in the wiring of PT.

  • PDF

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

A Study on the Safety Assessment and Damage Pattern of Water Purifier Compressors (정수기용 압축기의 안전성 평가 및 소손 패턴 분석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • The purpose of this study is to provide basic data for the safety assessment of a water purifier when water leaks due to inappropriate maintenance and the examination of the cause of accidents related to the leak. Due to its inspection and management by non-specialists, if a leak occurs in a water purifier with the water level controller being inclined, it may result in the failure of the compressor, power supply line, PCB, etc. The analysis of the thermal diffusion pattern of water purifier compressors using a thermal image camera shows that its maximum temperature was approximately $80^{\circ}C$. In addition, its operating current was a maximum of 13 A and the system's operating current was approximately 1.7 A after the compressor was charged. It was found that the housing type power cable cover of the compressor had the effect of preventing electric shock but has poor flame resistance. Furthermore, the performance of the overload protector, PTC relays, etc., was excellent but they have potential for problems as metallic terminals were exposed, resulting in the potential of a safety related accident. The terminals and their surface damaged by the tracking showed a trace of carbonization and the resistance between terminals was measured to be approximately $8{\Omega}$. In addition, while the tracking was proceeding, the fuse and circuit breaker installed for system protection did not operate.

Effect of Harmonic Generation and Countermeasures (고조파발생에 따른 영향과 대책 연구)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • Skyscrapers, large business buildings, and IT consumers use many appliances, and the electrical power stems can cause fires by overheating. This can result in damaged capacitors, lost data, rising ground potential, and communication obstacles from linear or nonlinear high frequency. To make sure of that we investigated 7 spots of a building, among which 6-spots were fair but the other one needed high frequency control. Spots 3, 6, and 7 needed diagnostic workup, and spots 2, 3, and 5 considered 5 high frequency currents. A phase is all of good but the high frequency current is greater than the standard level except for spot 1. As a result, a zigzag transformer or active filter needs to be installed, and the efficiency needs to be upgraded by investigating load unbalance factors and power factors.

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."

Research about Recognition of Government Officials Regarding Korean Disaster Management System in Charge (한국 재난관리체계에 대한 담당공무원들의 인식에 관한 연구)

  • Lee, Jung-Il
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.10-25
    • /
    • 2010
  • As disaster potential power of modern society grows larger, to improve and reinforce efficiently a national system which prepares and responds disasters, analyzed the survey for government officials of the department disaster management. Following is the contents of this research. First, cooperative relationship to disaster management organizations. Second, necessity of law establishment related crisis and disaster department. Third, by recognition regarding disaster management situational variable, overall recognition regarding disaster management situation, overall recognition regarding crisis type, recognition regarding occurrence possibility along disaster scale. Fourth, by recognition regarding structural variable of disaster management, the National Emergency Management Agency regarding disaster management, related organization, recognition difference of local government. It is a research about confusion regarding step of prevention - preparation - correspondence - restoration.

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.

Analysis on the Perception of Nuclear Power Plant and the Preference of its Policy Alternatives for Public Acceptance (원자력발전소에 대한 인식과 국민수용성 향상을 위한 정책대안들의 선호 분석)

  • Park, Young-Sung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • Public acceptance has become an important factor in nuclear power program particularly after Chernobyl accident and recent rapid democratization in Korea. Methods reflecting public opinions in order to improve public acceptance are firstly to understand what the public think about nuclear power plant and secondly to find out the public preference values for its policies. For this purpose, simplified multi-attribute utility (MAU) model was applied to analyze the public perception pattern for fire power production systems. And the conjoint analysis was applied to find out the quantitative values of public preferences for twelve policy alternatives to improve the safety and to support communities surrounding nuclear power plants in Korea. To implement these perception and preference analyses, mail survey was conducted to the Qualified sample who had the experience of visiting nuclear power plant. Diagnosis of their perception pattern for five power production systems was made by the simplified MAU model. Estimation of the quantitative preference values for potential policy alternatives was made by the conjoint measurement technique, which made it possible to forecast the effectiveness of each option. The results from the qualified sample and the methods used in this study would be helpful to set up new policy of nuclear power plant.

  • PDF

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.