• Title/Summary/Keyword: Finsler metric

Search Result 77, Processing Time 0.026 seconds

FINSLER SPACES WITH INFINITE SERIES (α, β)-METRIC

  • Lee, Il-Yong;Park, Hong-Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.567-589
    • /
    • 2004
  • In the present paper, we treat an infinite series ($\alpha$, $\beta$)-metric L =$\beta$$^2$/($\beta$-$\alpha$). First, we find the conditions that a Finsler metric F$^{n}$ with the metric above be a Berwald space, a Douglas space, and a projectively flat Finsler space, respectively. Next, we investigate the condition that a two-dimensional Finsler space with the metric above be a Landsbeg space. Then the differential equations of the geodesics are also discussed.

ON PROJECTIVELY FLAT FINSLER SPACES WITH $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Lee, Il-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.373-383
    • /
    • 1999
  • The ($\alpha$,$\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-from $\beta$;it has been sometimes treated in theoretical physics. The condition for a Finsler space with an ($\alpha$,$\beta$)-metric L($\alpha$,$\beta$) to be projectively flat was given by Matsumoto [11]. The present paper is devoted to studying the condition for a Finsler space with L=$\alpha$\ulcorner$\beta$\ulcorner or L=$\alpha$+$\beta$\ulcorner/$\alpha$ to be projectively flat on the basis of Matsumoto`s results.

  • PDF

PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE MATSUMOTO METRIC

  • Park, Hong-Suh;Lee, Il-Yong;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.501-513
    • /
    • 2003
  • The Matsumoto metric is an ($\alpha,\;\bata$)-metric which is an exact formulation of the model of Finsler space. Lately, this metric was expressed as an infinite series form for $$\mid$\beat$\mid$\;<\;$\mid$\alpha$\mid$$ by the first author. He introduced an approximate Matsumoto metric as the ($\alpha,\;\bata$)-metric of finite series form and investigated it in [11]. The purpose of the present paper is devoted to finding the condition for a Finsler space with an approximate Matsumoto metric to be projectively flat.

ON THE BERWALD CONNECTION OF A FINSLER SPACE WITH A SPECIAL $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.355-364
    • /
    • 1997
  • In a Finsler space, we introduce a special $(\alpha,\beta)$-metric L satisfying $L^2(\alpha,\beta) = c_1\alpha^2 + 2c_2\alpha\beta + c_3\beta^2$, which $c_i$ are constants. We investigate the Berwald connection in a Finsler space with this special $\alpha,\beta)$-metric.

  • PDF

ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE

  • Zhu, Hongmei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.399-416
    • /
    • 2017
  • In this paper, we study a class of Finsler metrics called general (${\alpha},{\beta}$)-metrics, which are defined by a Riemannian metric ${\alpha}$ and a 1-form ${\beta}$. We show that every general (${\alpha},{\beta}$)-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general (${\alpha},{\beta}$)-metrics are constructed explicitly.

FINSLER METRICS COMPATIBLE WITH f(5,1)-STRUCTURE

  • Park, Hong-Suh;Park, Ha-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.201-210
    • /
    • 1999
  • We introduce the notion of the Finsler metrics compatible with f(5,1)-structure and investigate the properties of Finsler space with such metrics.

  • PDF

SOME PROPERTIES ON FINSLER SPACES WITH A QUARTIC METRIC

  • Lee, Il-Yong;Jun, Dong-Gum
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1999
  • The purpose of the present paper is devoted to a study of some properties on spaces with a quartic metric from the standpoint of Finsler geometry.

  • PDF

EQUATIONS OF GEODESIC WITH AN APPROXIMATE INFINITE SERIES (${\alpha},{\beta}$)-METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2012
  • In the present paper, we consider the condition that is a geodesic equation on a Finsler space with an (${\alpha},\;{\beta}$)-metric. Next we find the conditions that are equations of geodesic on the Finsler space with an approximate infinite series (${\alpha},\;{\beta}$)-metric.

Conformal transformations of difference tensors of Finsler space with an $(alpha,beta)$-metric

  • Lee, Yong-Duk
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.975-984
    • /
    • 1997
  • In the Finsler space with an $(\alpha, \beta)$-metric, we can consider the difference tensors of the Finsler connection. The properties of the conformal transformation of these difference tensors are investigated in the present paper. Some conformal invariant tensors are formed in the Finsler space with an $(\alpha, \beta)$-metric related with the difference tensors.

  • PDF

ON DOUGLAS SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.699-716
    • /
    • 2009
  • We deal with a Finsler space $F^n$ with an approximate infinite series $({\alpha},\;{\beta})$-metric $L({\alpha},\;{\beta})$ = ${\beta}{\sum}_{k=0}^{r}(\frac{\alpha}{\beta})^k$ where ${\alpha}<{\beta}$. We introduced a Finsler space $F^n$ with an infinite series $({\alpha},{\beta})$-metric $L({\alpha},\;{\beta})=\frac{\beta^2}{\beta-\alpha}$ and investigated various geometrical properties at [6]. The purpose of the present paper is devoted to finding the condition for a Finsler space $F^n$ with an approximate infinite series $({\alpha},\;{\beta})$-metric above to be a Douglas space.

  • PDF