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FINSLER SPACES WITH
INFINITE SERIES (¢,(3)-METRIC

IL-YONG LEE AND HONG-SuUH PARK

ABSTRACT. In the present paper, we treat an infinite series («, §8)-
metric L = 82/(8 — «). First, we find the conditions that a Finsler
metric F'™ with the metric above be a Berwald space, a Douglas
space, and a projectively flat Finsler space, respectively. Next,
we investigate the condition that a two-dimensional Finsler space
with the metric above be a Landsbeg space. Then the differential
equations of the geodesics are also discussed.

1. Introduction

A Finsler metric L(e, 8) in a differentiable manifold M™ is called
an (a, B)-metric, if L is a positively homogeneous function of degree
one of a Riemannian metric a = (a;;(z)y*y?)'/? and a one-form 8 =
b;(z)y* on M™. The interesting and important examples of an (a, 3)-
metric are Randers metric o + 3, Kropina metric o?/8 and Matsumoto
metric &?/(a — (). The notion of an («, B)-metric was introduced by M.
Matsumoto (cf. [14]) and has been studied by many authors.

A Finsler space is called a Berwald space if the Berwald connection is
linear. Berwald spaces are specially interesting and important, because
the connection is linear, and many examples of Berwald spaces have
been known.

The notion of a Douglas space has been introduced by S. Bacsé and M.
Matsumoto [4] as a generalization of a Berwald space from the viewpoint
of geodesic equations. It is remarkable that a Finsler space is a Douglas
space, if and only if the Douglas tensor vanishes identically. Recently,
M. Matsumoto [16] has found the conditions that the Finseler spaces
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with some (a, B)-metrics « + 3?/a etc. be Douglas spaces and Berwald
spaces, respectively.

A Finsler space F™ = (M™, L) is called projectively flat if for any
point p of M™ there exists a local coordinate neighborhood (U, z*) of p
in which the geodesics can be represented by (n — 1) linear equations of
z*. Such a coordinate system is called rectilinear. The condition that a
Finsler space with an («, 8)-metric be projectively flat was studied by M.
Matsumoto [12]. Aikou, Hashiguchi and Yamauchi [1] gave interesting
results on the projective flatness of Matsumoto space.

Now, we consider the Cartan connection CT' for a Finsler space. If
the covariant derivative Ch;jjr of the C-torsion tensor of CT' satisfies
C’hiﬂkyk = 0, then the Finsler space is called a Landsberg space. A
Berwald space is characterzied by Chgjjx = 0. On the other hand, if a
Finsler space is a Landsberg space and satisfies some additional condi-
tions, then it is merely a Berwald space (cf. [3]). In the two-dimensional
case, a general Finsler space is a Landsberg space, if and only if its main
scalar I(z,y) satisfies I;;y* = 0 (cf. [7]).

The geodesics of a two-dimensional Finsler space F? = (M2, L) with
an (a, §)-metric are regarded as the curves of the associated Riemannian
space R? = (M?, o) which are bent by the differential 1-form 8 (cf.
[15]). M. Matsumoto and H. S. Park [17] have expressed the differential
equations of geodesics in two-dimensional Finsler spaces with a Randers
metric and a Kropina metric in the most clean form y” = f(z,y,v),
respectively.

The first part of the present paper is devoted to finding the conditions
that the Finsler space F™ with an (e, 8)-metric L = 82/(8 — «) be a
Berwald space (Theorem 3.1), a Douglas space (Theorem 4.1, 4.2) and a
projectively flat Finsler space (Theorem 5.1). The second part is devoted
to investigating the two-dimensional case. A condition that a Finsler
space F? with the metric above be a Landsberg space is derived, and
it is shown that if F? is a Landsberg space, then it is a Berwald space
(Theorem 6.1). Lastly, by referring an isothermal coordinate system,
the differential equations of the geodesics are discussed (Theorem 7.1).

2. Preliminaries

Let us consider the r-th series («, 3)-metric
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(2.1) L(e, ) =5§;0 (%)k

where we assume o < (3.
If r =1, then I = o+ 3 is a Randers metric. The condition that the
Randers space be a Berwlad space, and a Douglas space are found in
2

[16], respectively. If r = 2, then L = o+ 3+ % is treated in [13] as an

(a, B)-metric that a locally Minkowski space is flat-parallel. If r = oo,
then this metric (2.1) is expressed as the form

52
B—a

Then the metric above is called an infinite series (o, 3)-metric. We
have not at all investigated the geometrical meaning about the metric
above by this time. But this metric (2.2) is remarkable as the difference
between a Randers metric and a Matsumoto metric. In the present
paper, we want to deal with every geometric prosperty possible of a
Finsler space with this metric (2.2).

On the other hand, the geodesics of a Finsler space F* = (M™, L)
are given by the system of differential equations including the function

(2.2) L(a,B) =

4G (z,y) = ¢" (y"9;0,L? — 8;L?).

For an («, 8)-metric L(a, 8) the space R™ = (M™, «) is called the asso-
ciated Riemannian space with F™ = (M™, L(«, 3)) ([2], [9]). The covari-
ant differentiation with respect to the Levi-Civita connection ;% (z) of
R" is denoted by (;). We put (a¥) = (a;;)~', and use the symbols as
follows:

1 1 _ .
—_ —_ (2 — r 2 — r
rig = 5(bsj +bja)y sij = 5 (b — i), 75 = a"rey, 8 =aTsry,

r; = b,-?"Tj,Sj = brsrj, b= a”br, b2 = a’"sbrbs.

According to [11], if 82Lq + @¥? Lo # 0, where 72 = b2a? — 32, then
the function G*(x,y) of F™ with an («, 3)-metric is written in the form
2G" = ' + 2B,

(2:3) . aLg BLs ; aLaa (1 ; a
Bz_:____z * MMEP i oo Py S X 1
I, SotC {aLy La <ay ﬂb>}’
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where Lo = 0L/8a, Lg = OL/8B and Lo = 8*L/8ada, the subscript
0 means the contraction by 3* and we put
aB(rooLe — 2soalg)
2.4 C* = )
(24) 2(f%Ly + av?Lya)
We shall denote the homogeneous polynomials in () of degree r by
hp(r) for brevity. For example, yo%q is hp(2).
From the former of (2.3) the Berwald connection BT = (G;%, G%;,0)
of F™ with an («, §)-metric is given by
Gi]‘ = BJGZ = ’}’oij + Bi]’,
G’k = 0kG*; = 7' + By,
where we put B'; = ;B and B;'y = 8;B';. B'(z,y) is called the
difference vector ([11]). On account of [11], B;*\ is determined by
(25) LaBjtiyjyt + O(Lg(Bjtibt - bj;i)yj = 0,
where y, = a;iy’.
A Finsler space F™ with an (o, 3)-metric is a Douglas space, if and
only if BY = Biy/ — BJy* is hp(3) [4]. From the latter of (2.3) BY is
written as follows:

) 2
(26) BY=°Lls

i g i g Q" Lag e pyi g i, i
—L—(Szoyj—sjoy)ﬂL‘ﬁ—La-C o'y’ —&y").
« [

On the other hand, by [12, Theorem 1] a Finsler space F'™ with an
(a, B)-metric is projectively flat if and only if the space is covered by
coordinate neighborhoods in which v;*(z) satisfies

(¥0'0 — Yooo¥*/0?)/2 + (eLg/La)sh
+ (Laa/La)C*(a%i/ﬂ - yi) =0,
where Yo00 = Yo¥our, and B°Ly + ay?Laa # 0 is assumed. Since
@®Loo = %Lgg, we have
a(ﬁQLa + Oé"y2Laa) = ,62(01La + "}/2ng).

Hence C* is rewritten in the form

Otz(T'OQLa - 250(1Lg)
2.8 c* = ,
(28) 26(eLa + 2 Lep)
If aLy +72Lgg # 0, then from (2.7) and (2.8), we get
(aLa +7*Lpg){(v0’0 — Yo00y*/0?)/2 + (aLg/La)sh}
+ (Laa/La)(az/zﬁ) (rooLo — 250&Lﬁ)(a2bi/:6 - yi) =0.
Thus we have the following

(2.7)

(2.9)
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THEOREM 2.1. If aL, + 7v%Lgg # 0, then a Finsler space with an
(e, B)-metric is projectively flat if and only if (2.9) is satisfied.

We shall state the following Lemmas for later:

LEMMA 2.2 ([5]). If o® = O(mod (), that is, a;;(z)y‘y’ contains
bi(z)y® as a factor, then the dimension is equal to two and b? vanishes.
In this case we have § = d;(z)y® satisfying o® = 36 and d;b* = 2.

LEMMA 2.3 ([7]). We consider the two-dimensional case.

(1) Ifb? # 0, then there exist a sign € = +1 and § = d;(x)y* such that
a? = B%/b% + 6% and d;b* = 0. .

(2) If b2 = 0, then there exists § = d;(z)y’ such that o® = 36 and
d;b* = 2.

If there are two functions f(z) and g(z) satisfying fa? + g3? = 0,
then f = g = 0 is obvious, because f # 0 implies a contradition o?

(~g/1)8.

Next, we shall consider the two-dimensional case. Let us denote by
R(C) = 0 the differential equation of the Weierstrass form of a geodesic
C of R?. R(C) is given by

R(C) = ay2) — 1) + (' — y* "W,
where a; = da/0z' and o) = da/dy’, y* = dx'/dt and §' = dy'/dt
and W, is the Weierstrass invariant of R? (cf. [17]).

By putting y'.0 = ¥* + Yo', R(C) can be written in the form
(2.10) R(C) = (yly;zo - y2y;lo)Wr, Wy = {an1a22 — (a12)2}/a3.

Then we have

LEMMA 2.4 ([17]). In a two-dimensional Finsler space with (a, §8)-
metric L(wo, 3), the geodesics are given by the differential equation

(Lo +way*)R(C) + By 6w — Ly (by;z — b)) =0,

where w is the intrinsic Weierstrass invariant, R(C) is defined by (2.10)
and 6 = (a1,b2 — az,b1)y".

Suppose that the Riemannian metric a be positive-definite. Then we
may refer to an isothermal coordinate system (z*,v*) = (z,y,%,9) ([6])
such that

a=aFE, a=a(z,y)>0, E=+/22+792
Then R(C) is of the form R;(C), where R;(C) = —E%(j:jj—y:i)%—%(azy—

ayz). Next v% = (515 — ba2)?, and hence we may put v = b1y — bot: ([6])
and § = —a?y. Therefore, we have
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LEMMA 2.5 ([17]). For the Finsler space of Lemma 2.4, if « is
positive-definite and we refer to an isothermal coordinate system (z,y)
such that o = aF, then the differential equation of a geodesic is of the
form:

{La + aBw(byy — bei)? Ha(ti — 93) + E*(azy — ay@)}

2.11
(211) —E3Lg(b1y — bay) — E3a®w(b19 — bat)boyo = 0,
where
bo;o = (blzx + blyy)m + (bzz.’l' + bgy'y)y
(2.12)

1 . . . . . .
+ ={(@% + §%)(asbr + aybo) — 201 + boy)(aad + ayy)}
and we put b;, = 0b;/0z, by, = 0b; /0y, a, = Oa/0z and a, = Oa/0y.

3. Berwald space
In the present section, we find the condition that a Finsler space F'™

with an («, 3)-metric (2.2) be a Berwald space. In the n-dimensional
Finsler space F™ with an (a, 3)-metric (2.2), we have

o p _ BB —2a)

Le=G-ap "= G=ay

(3.1) ) 5
Lo 207
TG T e

Substituting (3.1) into (2.5), we have
(3:2) {BB;'s’y: — 20%(By's — bja)y’} + a{B(B"ibe — bj;i)y’ } = 0.

Assume that F™ is a Berwald space, that is, G;*x = G;*(z). Then
we have B;*; = B;%;(z). Since a is irrational in (y*), from (3.2) we have

BB;tiy’y, — 20°(Bjibe — bjis)y’ =0, B(Bj'ibe — bji)y’ = 0.
The former yields B;t;y7y; = 0 from the latter. Thus we have
Bj'ily, =0 and (Bj'ib, — bjs)y’ =0,
which show
Bjtiath + Bhtiatj =0 and Bjtibt — bj;i = 0.

The former yields B;*; = 0 by the well-known Christoffel process. There-
fore we have

THEOREM 3.1. The Finsler space F™ with an (a, 3)-metric (2.2) is a
Berwald space if and only if bj;; = 0, and then the Berwald connection
is essentially Riemannian (7v;*k,7Y0';,0).
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4. Douglas space

In the present section, we consider the condition that a Finsler space
F™ with an («, 8)-metric (2.2) be a Douglas space. Substituting (3.1)
into (2.6), we obtain

B{B%(B — a) + 2a7*}BY + a(2a — B){B*(B — ) + 2a7*}
(s’ — s9oy') — @®{Broo — 2c(B — 2a)sp }(b'y’ — Yy') = 0.
It is noted that 2L, +v2Lgg # 0.

Suppose that F” is a Douglas space, that is, BY are hp(3). Separating

(4.1) in the rational and irrational terms of y* because « is irrational in
(y%), we have

(4.1)

B*BY + o?B(36% — 2v°)(s'oy’ — sToy’) + 2a*Bso(b'y’ — b¥y’)
(ag) To|BE - BT +{20°(27" = %) ~ B} (s"oy’ — 50y’
- az(ﬁroo + 404280)(biyj - bjyi)} =0.
Hence the equation (4.2) is divided into two equations as follows:
(4.3) BBY +a?(36% — 29°)(s'oy’ — s 0y’) + 20" so(b'y — Vy') =0

and

(4.4) B(27? — B°)BY + {22 (27" - B%) — B} (%09’ — 7 0¥/")
| — o (froo + 4a”so)(b'y’ — b'y") = 0.
Eliminating B from (4.3) and (4.4), we obtain
(4.5) P(s'oy’ — s7oy") + o*Q(b'y’ — ¥y") =0,
where
(4.6) P =a*(2y" - 0%)(38% — 29%) - {27 (27* - §°) - %},
' Q = 202(27* — §%)s0 + B (Broo + 4a?so).
Transvection of (4.5) by b;y; leads to

(4.7) Pso+Qy2=0.
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The term of (4.7) which does not contain o? is found in 3°(Bsg — o).
Hence there exists hp(5) : Vs such that

(4‘8) ﬁs(ﬁSO - 7‘00) == 012‘/5.

Then it will be better to divide our consideration into three cases as
follows:

(A) Vs =0, (B) Vs #0, a® #0 (mod ), (C) Vs #0,a* =0
(mod G).

First, the case of (A) leads to 799 = Bso, that is, 2r;; = b;s; + b;s;.
Therefore, substituting rog = Bsg into (4.7), we have

(4.9) s0(P+~*Q1) =0,
where
Ql — 2052(2’72 “ﬁ2) +ﬁ2(ﬁ2 _{__4062)'
If P4+ +?Q; = 0 in (4.9), then we obtain
P +~%Q1 = v*a*Q1 + P - B°Qs
= b20’Q:1 + (o’ Py + 8%) — (o?8°Q2 + 8°)
=a?(b*Q1 + P1 — $%Q2) =0,
where
Py =2(2v* - 8%)(8% — 7%,
Qa2 = 2(2¥% + 5%).

Thus the term of b>Q1 + P, — $2Q2 = 0 which does not contain a? is
(b% — 10)B*. Thus there exists hp(2) : V» such that

(b* ~ 10)8* = a*Va,

where we assume b? # 10. Hence we have V3 = 0, which leads to a
contradiction, that is, P + ¥2Q, # 0. Therefore, we have sq = 0 from
(4.9) and we obtain rgp = 0 easily. Substituting sp = 0 and rgo = 0 into
(4.5), we have

(4.10) P(s'0y’ — s79y") = 0.
If P =0, then from (4.6)1, we have

(411) (29" - F2)(6% ~ 20%) - B*{o®(2y* - %) - p*} = 0.
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The term of (4.11) which does not contain o2 is 4°. Thus there exists
hp(4) : V4 such that
ﬁﬁ — a2v4’

from which we have V4 = 0. It is a contradiction, that is, P # O.
Therefore we obtain sfgy’ — s/oy® = 0 in (4.10). Transvection of this
equation by y; gives s'g = 0, which imply s;; = 0. Consequently, we
have r;; = s;; = 0, that is, b;;; = 0 are obtained.

Next, we treat the case (B). The equation (4.8) shows that there
exists a function k = k(z) satisfying

(4.12) Bso — o0 = k(z)a?.
Substituting (4.12) into (4.7) and using (4.6), we have
(4.13) Qb? + P1so — Q3B° =0,

where

Qs = 2(27% — B%)so + B*(4s0 — kB).

The term of (4.13) which seemingly does not contain a? is included in
the term: {(b% — 10)so + kB3}3*. Thus there exists hp(3) : V3 such that

BH{(B? — 10)s0 + kB} = a2V,
From o2 # 0 (mod f3), it follows that V3 must vanish and hence we have

(4.14) so = —b—f—(_x—)l—oﬁ.

From (4.14), we have s; = —k(x)b;/(b?> — 10). Transvection of the above
by b leads to k(x)b? = 0. Hence we get k(z) = 0. Substituting k(z) =0
into (4.12) and (4.14), we obtain so = 0 and rgp = 0. From (4.10), we
have P(s'oy’ — s7gyt) = 0. If P = 0, then it is a contradiction. Hence
P # 0. Therefore, we obtain sy’ — s7¢y® = 0. Transvection of this
equation by y; gives s = 0. Hence both the case (A) and (B) lead to
Tij = 0 and Sij — 0, that iS, bi;j =0.

Conversely if b;;; = 0, then F™ is a Berwald space, so F™ is a Douglas
space.

Finally, we deal with the case (C). Lemma 2.2 shows that n = 2,
b? = 0and o? = (34, § = d;(x)y'. (4.8)is of the form B34(Bso—7g0) = IV,
which must be reduced to Bsp — o0 = 6V, V = V;(z)y*. From (4.14) we
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obtain sy = k(z)8/10 easily. From (4.7) we have (8 — 120)so — {(8 —
26)sp — 6V} = 0, which implies 10sp = V. Thus we get V = kS.
Consequently we obtain

(4.15) roo = kB(B — 108)/10, s¢ = k{3/10.
Then (4.5) is written as

10(stoy? — s7oy*) + kd(b'y’ — By*) = 0.
Transvection by y; leads to
(4.16) s'o = k(y* — 6b°)/10.

Differentiating (4.16) with respect to y™ and using o = (6; 2a;; =
b;d; + b;d;, we have

(4.17) Sij = k(b]d, — b,,dj)/20
Conversely, (4.3) gives B* of the form
BY = 3k&%(b'y? — bly")/10,

which is hp(3), that is, F? is a Douglas space. (4.15) and (4.17) lead to
b;;; of the form

(4.18) bi,; = k(2b;b; — 9b;d; — 11b;d;)/20.

Thus we have the following

THEOREM 4.1. An n-dimensional Finsler space F™ with an («, (3)-
metric (2.2) provided b # 10 is a Douglas space, if and only if
(1) a2 _;é 0 (mod ,3) : bi;j = 0,
(2) a® = 0 (mod B) : n = 2 and b;; is written in the form (4.18),
where o? = 36, § = d;(z)y* and k = k(z).

From Theorem 3.1 and Theorem 4.1, we have

THEOREM 4.2. If an n-dimensional Finsler space F™ (n > 2)with
an (o, B)-metric (2.2) provided b® # 10 is a Douglas space, then it is a
Berwald space.
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5. Projectively flat Finsler space

In the present section, we deal with the condition that a Finsler space
with an (¢, 8)-metric (2.2) be projectively flat Finsler space.
First, it is noted that aL,+7v?Lgg # 0. Hence making use of Theorem
2.1 and substiuting (3.1) into (2.9), we have
(2b%a® — 3082 + B3)(—4atsty + 203850 + % Byt — Yo00BY’)

5.1 . .
(5-1) + (8a®sy — 4a*Bsy + 20> Brog) (?b — By) = 0.

The equation (5.1) is rewritten as a polynomial of the seventh degree in
« as follows:

(a7a® + asa? + azo® + a;)a + aga® + aga + aza® 4+ ag =0,
where
ar = 8(spb* — b?s'y), ag = 4(b%s%y — sob") 3,
as = 2(b*yo'o + 685’0 + roob” — 4s0y")B, as = 2(soy’ — 5Bs%0)5%,
ag = (28%s%0 ~ 26*v000y" — 38v0%0 — 2Br00y") B,
a2 = 8%, a1 =38%0000", a0 = —70008"Y".

Since ara® + asa* + azo® + a; and aga® + asat + asa? + ag are
polynomials and « is irrational in 4*, we have

(5.2) ara® + aso? + aza® + a1 =0,

(5.3) a0l + agat + asa® +ag = 0.

Consequently, a; and ag must contain o?2. From aq or ag there exists
hp(1) : vo = v;(x)y* such that

(5.4) Yooo = Voo

From (5.4) the term of (5.3) which does not contain o is (yo'0 —voy?)3%.
Therefore there exists hp(4) : V4 such that

(5.5) (¥0’0 — voy*)B* = o*Vj.

We suppose that a? # 0 (mod 3). Thus from (5.5) there exists a
function u® = u*(z) such that

(5.6) Yo'o — voy' = u'a’.
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Transvecting (5.6) by y;, from (5.4) we have u‘y; = 0, which imply
u' = 0. Thus we have

(5.7) Yo'o = voy'.
That is to say,
(5.8) 2v;"k = wb; + v; 0%,

which shows that the associated Riemannian space is projectively flat.
Next, substituting (5.4) and (5.7) into (5.1), we have

(2b%03 — 3aB? + B%)(—4a? + 2a8)sy

(59) . (80[380 _ 4a2,380 + 2aﬂ7‘00)(a2bi — ﬂyz) =0.

Transvecting (5.9) by b;, we get
(5.10)  {28(2Bsq + b%ro0)a? + 28%(Bso — roo) }or — 68°s0a® = 0,
which implies

(5.11) 28(2Bs0 + b°roo)a’ + 23%(Bso — ro0) = 0,
(5.12) s0 = 0.

Substituting (5.12) into (5.11), we have y%rgqp = 0, that is, 799 = 0
because of y2 # 0.

Further, the term of (5.1) which does not contain 8 is —8b%sipa’.
Therefore there exists a function A\* = M\(z) satisfying b%sty = M.
Transvection of the above by y; leads to A'y; = 0, that is, A* = 0. Thus
we have so = 0, that is, s;; = 0. Therefore, from r;; = 0 and s;; = 0,
we obtain b;,; = 0.

Conversely, it is easy to see that (5.1) is a consequence of b;,; = 0.
Thus we have

THEOREM 5.1. A Finsler space F™ (n > 2) with an (o, 3)-metric
(2.2) projectively flat if and only if b;; = 0 is satisfied and the associated
Riemannian space (M™,a) is projectively flat. Then F™ is a Berwald
space.
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6. Landsberg space of dimension two

In the present section, we investigate the condition that a two-dimen-
sional Finsler space F? with an («a, 8)-metric (2.2) be a Landsberg space.

Let F* = (M™, L(c, 8)) be an n-dimensional Finsler space with an
(o, B)-metric given by (2.2). The difference vector B* of the space has
been first given in [21] (c¢f. [10], [11], [22]). Here, by means of (2.3) and
(3.1) we have

i 22°A [, B(B-4a) 2a i

where we put

A= {Broo —2a(f — 2a)sp},
Q = 203b? — 3a3% + 3.

It is noted that Q # 0.
It follows from (6.1) that

(62) Too — QbTBr = Q_,B_é

Now we deal with the necessary and sufficient condition that a two-
dimensional Finsler space F'2 with an (o, §)-metric (2.2) be a Landsberg
space. It is known that in the two-dimensional case, a general Finsler
space is a Landsberg space, if and only if its main scalar Ij;y* = 0 [9].
Owing to [2], [8], the main scalar I of a two-dimensional Finsler space
F? with an («, B)-metric (2.2) is obtained easily as follows:

9y2 22
2 _
el” = 4003

where Z = —404b? + 80262 — 503 + 34.
Furthermore, by means of {7] we have

(6.3)

Lgp
Q) = *Zﬁua
B:y* = 100 — 26, B,

6.4 .
D 2y = a0+ 50),

; L
Yyt = 2(ro + so)o® — 2 (L—ﬁzﬁa + ﬁ) (roo — 2b,B").
(43
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Now, the covariant differentiation of (6.3) leads to
(6.5)
40429461,21. = 9Z[aQZ'y|2i + a2 {20(46° — 15082 + 16023)

+9Z(20p — 8%)}B;; — v*{200(56° — 16a8% + 16a°b?)
+QZ + 90Z(20%0? — 5%)}ay; — 202 (402 + 32)b2].

|2
Transvecting (6.5) by y¢, we have
(6.6) 4*Qelfy" = 9Z(Poyy’ + QBuy’ + Ry’ + Sbiy'),
where
P = 16a°b° — 6407 3%b* + 62053%b* + 28a° 3% — 680 3°h>
+270°8%” + o B7(6 — b?) — T08® + °,
Q = — 8a®p3b* — 2407 B%b* + 5 B3b? (1662 + 56) — 160°3%°
— a*B%(Th? + 48) + o3(%(40 — b?) — 90287 + a8,
R = —8a%b"* +28a°3%b% — 140 3%% + 2043% (b® — 12) + 230°3°
—8a23% + af”,
S = 8a%* — 32086%b% + 22075302 + a®4(24 — 6b?)
—220°6° + 6a* 8.

Consequently, the two-dimensional Finsler space F? with (2.2) is a
Landsberg space, if and only if

9Z(Paiy® + QBy' + Ry’ + Sbiy") = 0,
which implies
(6.7) Poysy' + QBy* + Ry’ + Sbiy' =0,

because Z = 0 implies 8 = 0, that is, it is a contradiction.
By means of (6.4), the equation (6.7) is rewritten as follows:

{(2a - B)P + BQ + 2(20°b* — afb? — B*)R}(roo — 2b,B")
+28(a2R + S)(ro + s¢) = 0.
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Substituting (6.2), P, @, R and S into the equation above, we obtain
(6.8)

{—8a23%b* + 5207 B*b% — a5 F5H2(106? + 40) — o®B5b%(4b% + 12)
+ 3222870 + 3 B3(6 — 100?) — a?B%(b% + 13) + 8a B — 1 }rgo
+ {—32a'98%* 4 2240°33b* — o®34b?(144b° + 160)
+ " B°b%(46% + 32) + o®B5b?(8b% 4 152) + a®47(24 — 104b?)
+ a*B8(160% — 64) + o3B°(2b? + 58) — 20a%3° + 208" } s
+ {~16a'°6%b* + 32a°8%b* + o® 34 (24 — 1667)
~ 5207 650% + 32a°85b? — a®B7(4b% + 6) + 14048° — 1003 3°
+ 2023} (g + 59) = 0.
Separating (6.8) in the rational and irrational terms of (3*), we have
Arroo + A2so + As(ro + so) + a{Bireo + Basg + Bs(ro + s0)} =0,
where
A; = —8a®5°b* — aBB°b2 (1067 + 40) + 32a*57b? — a?8°(b? + 13)
_ ,@11,
Ay = —32a'°3%* — o®Bb?(144b? + 160) + o %02 (86 + 152)
+ a*38(1662 — 64) — 200260,
As = — 16a'8%* + a®3*b? (24 — 16b%) + 32a58%b? + 14a% 38
+ 2a2ﬂ10,
B = 52a88%* — o 3567 (4b% + 12) + o?8%(6 — 10b°) + 83,
By = 22402 6%b* + a8 5%0% (4b? + 32) + o47(24 — 104b?)
+ a?3° (20 + 58) + 261,
Bs = 32a®3%b* — 52a°35b% — o447 (4b% + 6) — 10a%3°,

which yield two equations as follows:

(6.9) Aqroo + Aasg + As(ro + s9) =0,
(6.10) Biroo + Basg + Bs(ro + sg) = 0.
From (6.9) and (6.10) we obtain respectively
(6.11) — %90 =0 (mod o?),

(6.12) 48700 + 5o =0 (mod o?).
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(6.11) is reduced to
(6.11') Bree =0 (mod o?).
Then (6.11") is written as
Brog = o?Uny,
where Uy is hp(11). From b? # 0 it follows that o #Z 0 (mod 3) and

there must exist a function f(z) such that U;; = B! f(z). Hence we
have

(6.11") roo = o f(x); Tij = ai; f ().

Then (6.12) is reduced to

(6.12") sy =0 (mod a?).

(6.12") shows that there exists hp(10) Ui satisfying 8'lsy = &2Uny,
which implies Uyg = 0, because a>Uyp can not contain 3'! as a factor.
Thus we have

(6.12") sg = 0; s; = 0.

It is obvious taht (6.11") gives

(6.13) ro=pBf(z); 1 ="b;f(=z)

Therefore (6.11) and (6.12) are reduced to (6.11”), (6.12") and (6.13).
Further (6.9) and (6.10) are reduced respectively to

f(x){24033%b* + 20553*b* (130 + 8)
(6.14) — 6406%2 + 140268 (b% — 1) — 1%} =0,

(6.15) f(z){4a®Bb*(8b%+13)—da’ B°b? (b°+16)— 140> Bb* —24°} = 0.
Let us assume f(x) 5% 0. Then (6.14) and (6.15) imply

—B1 =062V3 and —28° = o®Wr,
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where Vg3 and W7 are hp(8) and hp(7) respectively. Analogously to
the above, these imply V3 = 0 and W; = 0. Thus we arrive at a
contradiction. Hence f(z) = 0 must hold and we have rog = 0; r;; =0
and sg =0; s; = 0.

If b2 = 0, then (6.9) and (6.10) are reduced to

(13a?8° + 8" )roo + 4(160*8° + 502 51%)s0

(6.16) — 270488 + a28Y) (ro + s0) = 0,

(3a2ﬁ8 + 4,310)7'00 + (12014ﬁ7 +29023° + 8115

(6.17) — (3a*8" +5a%8°)(ro + 50) = 0.

Making use of Lemma 2.1, (6.16) and (6.17) are reduced to

(6.18) (138 + B)roo + 4(1682 + 568)se — 2(76% 4 68) (70 + s0) = 0,
(6.19)
(38 + 4B)rgo + (126% + 2968 + B%)so — (362 + 588)(ro + so) = 0.

Since rg+8¢ = b?iyi /2 vanishes because of b2 = 0, the above equations
are written as follows:

(6.18") (138 4 B)roo + 4(1656% 4 568)sg = 0,
(6.19) (38 +48) 700 + (126% 4 2968 + 5)so = 0.

From (6.18’) adn (6.19') we have

(6.20) Broo =0 (mod J),
(6.21) 48rgo + %50 =0 (mod 9).

From (6.20) there exists hp(2) X5 such that
Broo = 6X>.

Since B # 0 (mod 9), there exists hp(1) A satisfying

1
(6.20,) rgo = Ad; Tij = E(Aldj + )\]dz)
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Substituting (6.20’) into (6.21), we have as follows: there exists hp(2)
W, such that

(6.21) B(4AS + Bso) = SW,.

From 8 # 0 (mod ) we have W5 = uf and 4§ + Bsg = ud, where p is
hp(1), that is, Bsg = 6(u — 4)). Therefore there exists a function g(z)
such that

(6.22) so=g(z)d and p—4X=g(z)p.

Substituting (6.20') and so = g(z)d into (6.18') and (6.19'), we get
respectively

(6.23) (130 + B)A + 4g(x)6(166 + 56) = 0,

(6.24) (36 + 4B)\ + g(x)(126% + 2968 + 5%) = 0.

The term A3 of (6.23) and the term 43+ g(z)3? of (6.24) seemingly do
not contain d, and hence we must have hp(1) X; and hp(1) Y; satisfying

M =6X; and 4)\3+ g(z)B% = oY1,
respectively. Eliminating A from the equations above, we get

where W) = Y; —4X; is hp(1), and hence W; = 0, because 6W; can not
contain 32 as a factor. Hence we obtain g(z) = 0. Substituting g(z) =0
into (6.23), we have

(136 + p)A = 0.

If A # 0, then we have 136 + 8 = 0. It is a contradiction, because (53, 6)
are independent. Hence A = 0. From (6.20’) and so = g(z)d of (6.22)
we have rg0 = 0 and sg = 0 directly.

Summarizing up, we obtain rgo = 0 and sg = 0 in both cases of b2 #£0
and b? = 0, that is,

(6.26) bi;j + bj;i =0, brbr;i = 0.
As is shown in [7], the equation (6.26) is equivalent to b;; = 0. Conse-
quently, we have

THEOREM 6.1. Let F? be a two-dimensional Finsler space with an
(o, B)-metric (2.2). If F? is a Landsberg space, then it is a Berwald
space.
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7. Geodesic equation of dimension two

In the present section, by referring an isothermal coordinate sys-
tem, we find the differential equations of geodesics of a two-dimensional
Finsler space satisfying an (a, 8)-metric (2.2).

Substituting (3.1) and w = 2/(6 — @)® into (2.11), we obtain the
differential equations of geodesics as follows:

{B*(B — a) + 2aE(b1y — bo#)*Ha(d§ — %) + E*(azy — ayd)}
— E*{B(B — a)(B — 20)(bry — baz) + 2a*(b1y — ba)bo,0} = 0,

where bo.o is given by (2.12).

If we take z of (z,y) as the parameter of curve C, that is, £ = 1,
y=1v9,2=0,9=y" and we put Q* = 1+ (y')?, then (7.1) is reduced
to

(7.1)

[(b1 +b2y')® + a{ (203 ~ B3)(y)? + 2b1bay’ + (263 — )} Q] {ay”
(7.2) 4+ Q%*(asy’ — ay)} — Q°[{(b1 + b2y')® — 3a(by + b2y/)*Q

+ 2a°(by + bzy')Q2}(b1y — byg) + 202 (byy — bz)bg;o] =0,
where

bS;o = (blm + blyyl) + (b2:c + b2yy,)y,
1
+ E{(l + (")) (@zbr + ayby) — 2(b1 + boy') (g + ayy) }.

Then (7.2) is rewritten in the form

(7.3)
[(b1 + b2y )*{ay” + Q®(azy’ — ay)} + 3a(by + b2y/)? (bry — b2s)Q*]
+Q[a{(2b] — 3)(1/)? + 2b1bay’ + (263 — b)) Hay” + Q*(asy’ — ay)}
— Q*{(b1 +b21/)? (bry — baz) + 207 (b1 + bay') (b1y — bos)Q’
+2a*(b1y’ — ba)bi}] = 0.

Since @ is irrational in (y'), (7.3) is divided into two equations as follows:

(7.4) (b1 + bay){ay” + Q*(azy’ — ay)} + 3a(byy — bay)Q* = 0,

a{(2b7 = b3)(y")? + 26162y’ + (263 — b7) Hay” + Q*(azy — ay)}
(7.5)  — Q*{(b1 + bay/)3(b1y — b2y) + 2a% (b1 + o) (b1y — b2z)Q?
+2a®(b1y’ — ba)bj0} = 0.
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Furthermore, (7.4) and (7.5) are rewritten in the form

~3a(by — b2} {1 +2(»)% + (v')*}
b1 + b2(y’) ,

(7.6) ay” + {1+ (y)2}(amy/ —ay) =

(7.7)

ay” + {1+ (y)*}azy' - ay)
Qb1+ bay')P(bry ~ baw) + 2% (b1 + oy ) (bry — b2r)Q + 202 (byy’ — by)bjo}
- a{(2b3 — b}) + 2b1bay’ + (207 — b3)(y')?} '

Thus we have

THEOREM 7.1. Let F? be a two-dimensional Finsler space with an
(o, B)-metric (2.2), where a is assumed to be positive definite. If we
refer to an isothermal coordinate system (z,y) such that o = aE and
Q = /1 + (y')?, then the differential equations of a geodesic y = y(x)
of F? are given by (7.6) and (7.7).

Next, we deal with the case where the associated Riemannian space
is Euclidean one with an orthonormal coordinate system. Then a = 1,
a; = 0 and ay = 0. Therefore (7.6) and (7.7) are reduced to

/ "o 3(b1 - wa){l + 2(y)2 + (y/)4}
(76 ) y - L bl + bz(y,) 3

y' = Do + D1y’ + Da(y')? + D3(y')® + Da(y')* + Ds(y')°

7

(7.7 (267 — B2) + 2bubay’ + (26 — B3) ()2 :
where

DO = bl (bf + 2)(bly - b2z) - 2b2b1m,

D1 = b3(3b2 + 2)(b1y — baz) + 2{b1b1z — ba(byy + baz)},

D2 - bl(3b§ + b% + 4)(b1y - b2z) + 2{bl(bly =+ b2ac) - b2(b2y + bla:)}a

D3 = by(3b3 + b3 + 4)(b1y — bay) + 2{b1(b1z + bzy) — ba(b1y + b2z)},

Dy = by (365 + 2)(b1y — bax) + 2{b1(b1y + baz) — babyy },

D5 = by (b7 + 2)(b1y — bay) + 2b1bgy.

~ Thus we have the following
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COROLLARY 7.2. Let F? be a two-dimensional Finsler space with an
(o, B)-metric (2.2) whose associated Riemannian space R? = (M2, q)
is Euclidean such that a = 1 and a; = a, = 0. In an orthonormal
coordinate system (z,y) of R?, the differential equations of geodesics of
F? are given by (7.6') and (7.7').

In order to find more concrete forms of (7.6’) and (7.7"), we deal
with the case where the associated Riemannian space is Euclidean one
with an orthonormal coordinate system. If we take b; and b, such that
by = 0b/0x, by = 0b/0y for a scalar b, then by, — bg; = 0. Thus (7.6")
and (7.7’) are reduced to

(7.6") Yy’ =0; y=-cx+d, wherec, dare constants,

g = Bt By + Ex(y')* + Es(y')® + Es(v))* + Es(y')°

(7’7”) 2 2 / 2 2 2 )
(205 — b3) + 2b1bay’ + (205 — b3)(v")

where
FEo = —=2bybyz, FEi = 2(bybyy — 2bybsy),

E2 = 2{2b,bsy — by (byy + bz},
Es3 = 2{bg(bss + byy) — 2bybay },
Ey = 2(2bybgy — bybyy),

E5 = 2b;by,.

Thus we have

COROLLARY 7.3. Let F? be a two-dimensional Finsler space with
an (o, B)-metric (2.2). If we refer to an orthonormal coordinate system
(z,y) with respect to a and by, —ba, = 0, where by = 8b/dx, by = 8b/Oy
for a scalar b, then the differential equations of geodesics y = y(z) of F?
are given by (7.6"), that is, a straight line, and (7.7").
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