• Title/Summary/Keyword: Finite ray tracing

Search Result 38, Processing Time 0.026 seconds

A New Ray Tracing Method of a Plastic Lens Connected with finite-Element Analysis (유한요소해석과 연계한 플라스틱 렌즈의 광선추적 기법)

  • Park K.;Lee S. K.;Jeon K. S.;Mo P. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.100-107
    • /
    • 2005
  • The present work covers a new ray tracing scheme of an injection-molded plastic lens linked with finite element analysis fur injection molding processes. The traditional ray tracing schemes have been based on the assumption that optical property of the lens is homogeneous throughout the entire volume. However, this assumption is quite unrealistic for injection-molded plastic lenses since material properties vary at every point due to injection molding effects. In order to consider non-homogeneous property of a lens, a modified ray tracing method is proposed in connection with finite element analysis of injection molding. Through the analysis of the injection molding process, the distribution of refractive indices can be obtained. This information is then utilized in the proposed ray tracing scheme based on finite element meshes so as to take into account variation of the refractive indices. The effect of mold temperature is also investigated through finite element analysis, and the relevant optical quality is evaluated through the proposed ray tracing simulation.

Optical Analysis for the Autostereoscopic Display with a Lenticular Array Using Finite Ray Tracing (유한광선추적을 이용한 렌티큘러 렌즈 기반 3차원 디스플레이 장치의 해석)

  • Kim, Bong-Sik;Kim, Keon-Woo;Choi, Da-Shin;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2014
  • We propose an analysis method of an autostereoscopic display system with lenticular lens array using finite ray-tracing method that is verified by the geometrical optics. In the present work, we adopt the cylinder equation for the mathematical expression of the lenticular lens. For the calculation of the direction cosine of the transmitted ray, we first calculate the refracting point at bottom of the lens and the direction cosine of the incident ray that propagating through the lens by the Snell's law, and then apply to finite ray-tracing method. Finally, we obtain the simulation results for the intensity distribution of the ray at optimal viewing distance. From these results, we confirm the realization of 3D image that exists separately according to the viewing position at an optimal viewing distance.

Evaluation of Optical Performance for an Aspheric Lens Connecting with FE Analysis of Injection Molding (사출성형 유한요소해석과 연계한 비구면렌즈의 광학적 특성평가)

  • Park, K.;Um, H.J.;Kim, J.P.;Joo, W.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.25-30
    • /
    • 2007
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting a finite element (FE) analysis of injection molding with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a new.ay tracing scheme is proposed in conjunction with a FE analysis of the injection molding. A numerical scheme is developed to calculate ray paths on every element layer with more realistic information of the refractive indices which can be obtained through the FE analysis. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding (사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

A study on the development of CAD system for the design of lens of the turn signal lamp (자동차 방향지시등 렌즈설계를 우한 CAD 시스템의 개발에 관한 연구)

  • 이재원;이우용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.89-95
    • /
    • 1993
  • This paper presents the development of CAD system for the design of lens of the Turn Signal Lamp that can model and simulate its optical performance. The system consists of three main modules: skin surface modeling module, inner lens modeling module and optical performance simulation module. Skin surface geometry can be modeled by the input of data file and inner lens can be modeled by the input of only four parameter using its geometric characteristics. Also light distribution pattern, the barometer of optical performance is generated by means of finite ray tracing method. The system display modeled geometry, ray tracing and generated light distribution pattern.

  • PDF

Automatic ray-code generation for efficient ray tracing (효율적인 파선추적을 위한 파선코드 자동 생성에 관한 연구)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.55-62
    • /
    • 2000
  • In constructing a synthetic seismogram using ray-tracing method a suite of ray-code is required to obtain a realistic seismogram which is similar to the actual seismogram or earthquake record under consideration. An infinite number of rays exist for any arbitrarily located source and receiver. One select only a finite number of such rays in computing a synthetic seismogram so their selection becomes important to the validity of the seismogram being generated. Missing certain important rays or an inappropriate selection of ray-codes in tracing rays may result in wrong interpretation of the earthquake record or seismogram. Automatic ray-code generation will eliminate such problems. In this study we have developed an efficient algorithm, with which one can generate systemastically all the ray-codes connecting source and receiver arbitrarily located. The result of this work will helpful in analysing multiple reflections in seismic data processing as well as simulating Lg wave and multiply reflected or converted phases in earthquake study.

  • PDF

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Finite Raytracing Through Non-rotationally Symmetric Systems (비대칭형 광학계의 유한광선추적)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.217-222
    • /
    • 1990
  • A general ray tracing scheme has been developed for using a personal computer which trace finite rays through any non-rotationally symmetric system. This scheme may be used for the surface type such as conic section with or without aspherics, toric surfaces, sagittal and tangential cylindrical sections and axicons. Specially, any combinational of decentered, tilted and rotated surfaces has been considered. Before transfering to the next surfaces, the local coordinates are refered back to an initial reference coordinate system. We can get a mathmtical model of a non-rotationally symmetrical finite ray trace running on an inexpensive personal computer.

  • PDF

Effect of Thermal Deformation of Optical Pick-up Base on the Optical Performance (광 픽업의 열변형이 광학적 성능에 미치는 영향)

  • Kim H.;Cho S.;Lee J.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • The effect of thermal deformation of optical pick-up due to laser diode(LD) and LD driving integrated circuit on the optical performance of digital versatile disk(DVD) optical system was analyzed using the finite element analysis with initial surface residual stress conditions, and results were compared with the measured results with holographic interferometry. Ray tracing was performed using the deformed configuration of optical system.

  • PDF

Design and Tolerance Analysis of 3-D Stereoscopic Display Modules with Alternating Illumination Angles (조명각 변조 방식의 3차원 입체영상 표시장치설계 및 공차분석)

  • Jeong, Woo-Chul;Ha, Sang-Woo;Park, Hun-Yang;O, Beom-Hwan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol;Park, Sun-Ryoung;Jo, Sung-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In order to realize a 3-D stereoscopic display module with alternating illumination angles, several conditions required for a lenticular lens sheet were established, and then both the lens specification and the module structure were designed. Also the performance of the stereoscopic module and its tolerance characteristics were evaluated by simulating the intensity distribution on the observation plane with a finite-ray tracing technique. From the evaluation, it was known that an intersection area between two adjacent lenses should not be filled and that the lateral mismatch between a planar liquid crystal shutter and a lens sheet should be minimized.