• 제목/요약/키워드: Finite element inverse method

검색결과 183건 처리시간 0.023초

최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석 (Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method)

  • Kim, C.B.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

탄성체 경계 트랙션을 구하는 문제에서 상호 수직 기저 함수를 사용한 역문제 해석 방법의 개발 (Development of an Inverse Method Using Orthogonal Basis Functions for the Evaluation of Boundary Tractions on an Elastic Body)

  • 김사영;김현규
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.487-493
    • /
    • 2010
  • 대부분의 구조해석 문제는 외부에서 주어진 하중에 대한 변형과 응력에 관심을 두고 있지만 많은 경우에서 표면 또는 내부에 주어진 응력이나 트랙션을 구하는 역문제 해석이 필요하게 된다. 본 연구에서는 구하고자 하는 트랙션에서 멀리 떨어진 영역의 변위를 측정하여 미지의 트랙션을 평가하는데 유한요소법을 사용한 역문제 수식화를 적용하였다. 일반적으로 역시스템의 불안정으로 인하여 측정 변위의 작은 오차는 해석 결과에 큰 영향을 주게 된다. 이와 같은 역시스템의 불안정성을 개선하기 위하여 본 연구에서는 구하고자 하는 트랙션에 가까운 단면의 변위를 Gram-Schmidt 수직화 기법을 통한 수직기저함수 사용하여 예측하고 보다 안정된 역문제를 해석하는 방법을 개발하였고 장점들을 수치 예제를 통하여 보여주었다.

유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구 (Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method)

  • 조천수;이충호;허훈
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

One-Step Forming을 이용한 박판성형 해석에 관한 연구 (Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming)

  • 안현길;고형훈;이찬호;안병일;문원섭;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추 (Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test)

  • 김낙현;김윤재;윤기봉;마영화
    • 대한기계학회논문집A
    • /
    • 제37권6호
    • /
    • pp.753-760
    • /
    • 2013
  • 금속 재료의 수소취화 현상에 대한 분석은 수소플랜트의 안전성 평가를 위해 매우 중요하다. 수소환경하 취화된 재료의 기계적 물성과 파괴인성은 구조 건전성 평가에 가장 기본적이며 중요한 자료이다. 본 논문은 최근에 개발된 유한요소 해석 기반 현상학적 손상해석을 소형펀치 실험에 적용하고 Inconel 617 재료의 대기 중 소형펀치 실험결과와 비교 함으로써 손상해석 기법의 적용 타당성을 보였다. 또한 역변환 기법을 사용하여 소형펀치 실험으로부터 인장물성을 예측하고 인장실험으로부터 구한 재료 물성과 비교하여 적용 가능성을 검증하였다. 검증된 결과를 바탕으로 수소취화된 시편에 대한 소형펀치 실험결과에 역변환 기법과 손상해석을 적용하여 수소취화 된 재료의 기계적물성과 파괴인성을 예측하였다.

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

AN ITERATIVE DISTRIBUTED SOURCE METHOD FOR THE DIVERGENCE OF SOURCE CURRENT IN EEG INVERSE PROBLEM

  • Choi, Jong-Ho;Lee, Chnag-Ock;Jung, Hyun-Kyo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권3호
    • /
    • pp.191-199
    • /
    • 2008
  • This paper proposes a new method for the inverse problem of the three-dimensional reconstruction of the electrical activity of the brain from electroencephalography (EEG). Compared to conventional direct methods using additional parameters, the proposed approach solves the EEG inverse problem iteratively without any parameter. We describe the Lagrangian corresponding to the minimization problem and suggest the numerical inverse algorithm. The restriction of influence space and the lead field matrix reduce the computational cost in this approach. The reconstructed divergence of primary current converges to a reasonable distribution for three dimensional sphere head model.

  • PDF

Defect Shape Recovering by Parameter Estimation Arising in Eddy Current Testing

  • Kojima, Fumio
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.622-634
    • /
    • 2003
  • This paper is concerned with a computational method for recovering a crack shape of steam generator tubes of nuclear plants. Problems on the shape identification are discussed arising in the characterization of a structural defect in a conductor using data of eddy current inspection. A surface defect on the generator tube ran be detected as a probe impedance trajectory by scanning a pancake type coil. First, a mathematical model of the inspection process is derived from the Maxwell's equation. Second, the input and output relation is given by the approximate model by virtue of the hybrid use of the finite element and boundary element method. In that model, the crack shape is characterized by the unknown coefficients of the B-spline function which approximates the crack shape geometry. Finally, a parameter estimation technique is proposed for recovering the crack shape using data from the probe coil. The computational experiments were successfully tested with the laboratory data.