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Defect Shape Recovering by Parameter Estimation Arising in
Eddy Current Testing

Fumio Kojima

Abstract This paper is concerned with a computational method for recovering a crack shape of steam generator
tubes of nuclear plants. Problems on the shape identification are discussed arising in the characterization of a
structural defect in a conductor using data of eddy current inspection. A surface defect on the generator tube can
be detected as a probe impedance trajectory by scanning a pancake type coil. First, a mathematical model of the
inspection process is derived from the Maxwell’s equation. Second, the input and output relation is given by the
approximate model by virtue of the hybrid use of the finite element and boundary element method. In that model,
the crack shape is characterized by the unknown coefficients of the B-spline function which approximates the crack
shape geometry. Finally, a parameter estimation technique is proposed for recovering the crack shape using data

from the probe coil. The computational experiments were successfully tested with the laboratory data.
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1. Introduction

Quantitative nondestructive evaluation
(QNDE) on steam generator (SG) tubes is a critical
issue for the structural integrity of the pressurized
water reactor nuclear plants ( Takagi et al, 1994,
1995, 1996 ). The detection of a crack is not only to
find out flaws but also to determine the size, shape,
and orientation of each detective flaw. Eddy current
testing (ECT) is used for in-service inspection of
SG tubes because of high detectability and rapid
scanning process. Although there exists wide range
of tube degradation mechanisms, it is important
to detect the surface crack inside and/or outside
tubes.
considered for estimating crack shape in conducting

In this paper, a computational method is

materials using data of eddy current inspections.
Figure 1 shows the overall configuration of the
inspection process. In this figure, a pancake type
probe coil is used for the inspection of the tubes

and defects can be detected as a probe impedance
trajectory by scanning the probe coil. The in-
version techniques using eddy current data have
been studied computationally and experimentally
by many authors ( e.g., Sabbagh, 1986, Bowler
et al, 1991, 1995, and Harrison et al, 1996, etc ).
Most efforts on inverse analyses have been directed
to an identification of inhomogeneity of electrical
conductivity by measuring impedance trajectories
of the coil. In our approach, the recovery of crack
shape can be formulated as a domain identification
problem. Domain identification problems have
been concentrated on the design of engineering
systems which involve numerous applications to
engine, airplane, etc ( See Pironneau, 1983 and
the references therein ). Although the problem
treated here is motivated by an application that
is different from those shape design problems, the
resulting computational aspects are closely related.
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Fig. 1 : An illustration of inspection process

Some previous efforts have focused on QNDE based
on the measurements of thermal diffusivity ( See
Banks and Kojima, 1989 and Banks et al, 1990 ).
In this paper, the similar method is applied to the
magnetic inverse problem arising in eddy current
inspection. The crack shape is characterized by
the unknown function on the boundary and the
nonlinear output least square problem is considered
for estimating the unknown function. To solve the
nonlinear optimization problem, there are several
ways of evaluating the gradient of the output least
square error with respect to the unknown function.
In this approach, the discrete analogue of the
continuous shape design method is used with the
background knowledge of material derivative. This
method is a natural extemsion of the calculus of
variation associated with the system design ( See
Pironneai, 1983 for more details ).

This paper is organized as follows. In Section
2, the mathematical modeling of the inspection pro-
cess is discussed. Measuring impedance trajectory
by the pancake coil is derived from the Maxwell’s
equations and the Biot-Savart’s law. In Section 3, a
parameter estimation technique is proposed for es-
timating the shape of surface crack on the plate.
The crack is characterized by the finite number of
unknown coefficients based on B-spline approxima-
tions. The estimation scheme is proposed using the
hybrid scheme of the finite element and the bound-
ary element method. In Section 4, a computational
method is given for cvaluating the gradient of the
output least square error with respect to the un-
known parameters. Final part of this paper is de-
voted to results of computational experiments in or-
der to demonstrate the efficacy of the proposed com-
putational method.

2. Mathmatical Model of Inspection

The ECT analysis is described by the magnetic
vector potential A and the electric scalar poten-
tial ¢ in three dimcnsions. Let (¢,z) be the time
t (0 <t < oc) and the location z = (21, z9,23)
in R3.
ple in R® and S be its boundary corresponding to

Let V be a bounded domain of the sam-

material inspected. Our attention is focused on a
isotropic homogeneous plate as shown in Fig. 1. The
mechanism of ECT is described in the following way.
First, the force current density vector is applied to
the pancake type probe coil in Fig. 1. Then the cor-
responding eddy current is generated inside the con-
ductor near the coil. Then the impedance of the coil
is affected due to the existence of the eddy current.
The eddy current testing is to detect and character-
ize the crack inside the conductor by analyzing the
coil impedance change due to the eddy current. As
is well-known, the mathematical model of eddy cur-
rent testing can be derived by Maxwell’s equations,

V-E =0 (1)

V-B =20 (2)
oB

VXE:—E 3)

VxH =1J (4)

where E, B, H, and J are the electric field inten-
sity, the magnetic flux density, the magnetic field in-
tensity, and the current density vector, respectively.
The solutions of the partial differential equations (1)
through (4) are only obtained when additional con-
straints are imposed. In ECT, the constitutive laws
also hold:

J =J,+0E (5)
B = iH (6)

where Jg, o, and u denote the applied source current
of the coil probe, the electrical conductivity, and the
magnetic permeability, respectively.. In general, the
eddy current model is formulated by the electrical
scalar potential ¢ and the magnetic vector potential
A instead of E and B. Those potential formula-
tions are particularly convenient when the electro-
magnetic problem is driven by a well-defined source
current distribution. More precisely, the model can
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be formulated by

0
E = —5(A+V9) (7)
B =VxA )

Il

where ® denotes the time integration of the electric
scalar potential ¢ defined by

B(t) = / o(r) dr. (9)

For convenience of discussions, the domain is divided
into the air region and the conductor region. Then
the governing equation in air region (R® —V)is then
expressed by

_Lloea- J, inR}*-V. (10)
Ho
where py denotes the magnetic permeability in air.
Since the boundary of the system eqn.(10) becomes
semi-infinite, the above equation can be represented
by a boundary integral equation. The fundamental
solution of eqn.(10) has the representation

ut(z,2) = (dxlz — 2 |) " (11)

Then, from the system eqn.(10), the solution on the
boundary of the conductor satisfies the following
boundary integral equation,

ou*(z;, z )

1
A/u*(‘%x’)%%(x')dﬂx')
s

= MO/ w'(zg, 2 VI (x )de forz €S (12)

e

A(z)dl(z)

where dI' denotes the boundary measure and V, de-
notes the region of the pancake coil. The eddy cur-
rent in the conductor region is governed by

1 ., OA -
v-a(f’a—‘;“+v¢) —0m VvV (14)

where jig denotes the magnetic permeability of the
air. It is noted that the magnetic permeability of
SG tube is equal to that of air since INCONEL600
used for SG tube is non magnetic material. Since
the alternative current source is applied in real eddy
current testing, it is convenient to use the complex

phasor representation. Suppose that the alternative
current source is given by

Jo = J, cos(wt) (15)

where w = 27 f is the angular frequency correspond-
ing to the applied frequency f. Then the eddy cur-
rent model considered here is represented by

RN
Mo
jwV - -oc(A+V®) =0

jwo(A +V®) (16)
in V, (17)

with the interface matching condition eqn.(12) at S.
Thus the eddy current density in conductor can be
evaluated as

J, = —jwo(A + V). (18)

The measurements can be made by the impedance
change caused by the eddy current in the conduct-
ing sample. By virtue of the Biot-Savart’s law, the
magnetic vector potential of the coil caused by the
eddy current is obtained by

’

A(z) :uo/ w(2,2)I. (&) di forz €V,
Vv
(19)

Thus the impedance change due to the eddy current
can be computed as

AZ = AR+ jwAL = —jwN f A, dl/I,  (20)

where AR,wAL, N and I denote the resistivity of
the impedance change, the reactance change, the
number of coil turns, and coil current per turn, re-
spectively. Consequently, the relation between the
input and the output is described by the following
map:

J, — AZ (21)

through eqns. (12) and (15) through (20).

3. Nondestructive Evaluation by
Parameter Estimation

The inverse problem considered here is to es-
timate a crack shape by measuring the impedance
trajectory AZ in pancake type coil. To this end,
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the admissible paramecter class is given by approxi-
mating a crack shape. By approximating the map-
ping of J, into AZ in a finite dimensional space,
the parameter-to-data mapping can be constructed.
Then the domain identification problem is converted
into a parameter estimation problem. The remain-
ing part of this section is devoted to a computational
method for solving the parameter estimation prob-
lem.

3.1. Admissible Parameter Class:

The dimension of a test piece is preassigned as
{1 X1y x13. Let ¢; and ¢, be the length and the width
of a crack. For the convenience of discussions, the
crack is located at the center of the test piece,

h—c li+qg lo—cw bbtey
Cr= -, , .(22
P = (A (2 2 ()
To characterize the shape of the surface crack, the
curved function on (z1, z2) is defined by

z3 = h(z1.22;q)

Zgl gM BM (1) for (z1,32) € G,
_ )k (inner crack) (23)
0 (outer crack)

for (zq,®2) € (0,11) x (0,13) — C.

Taking into account that the width of the crack is
very narrow, the depth of the crack is characterized
by a simple B-spline function ( See e.g., de Boor
(1978) ) where {BM}M, are a sequence of B-spline
functions with knot sequence such that

AM:{{-Y/‘? 1L

ll;l =n<eis. sﬁlzll?l} '
(24)
The Fourier coefficient vector g = {¢M 1}, denotes
a constant parameter vector to be identified among
values in a given admissible parameter set Quq,

Qai={a € RM|0<q, < ¢ <qy<la(i=1,---, M)}

(25)
where gy and g;; are given constants in RM Figure
2 illustrates dimensions of a sample specimen with
It is noted that the location, the
size of crack, and the orientation of the crack are

a inner crack.

preliminary determined by measurement data.

XA
I
lz/ 2 +
0 172 l X,
X3A X=h(q, X, %, )

Fig. 2 : Dimension of a sample specimen with defect

3.2. Approximate Model with the Unknown
Parameters :

The precise numerical method for solving the
input-output mapping defined by eqn.(21) plays
an essential role in formulating the identification
problem treated here. Although the finite element
method using the nodal elements is a simple scheme
and is easy to build up the computer program, it is
required to remesh finite elements at each location
of pancake probe coil. This remeshing procedures
cause the considerable amount of computational vol-
ume for the problem considered here. Since there is
no neecd to remesh the finite element decomposition,
the boundary element method has an advantage for
the problem considered here but the serious compu-
tational efforts are necessary for implementing nu-
merical integration of boundary element matrices.
In this paper, taking into account that the system
equation can be defined on the closed domain ( con-
ductor region V' ) and on the open domain ( air re-
gion R®—V ), the hybrid scheme of the finite element
and the boundary element method is applied to this
problem. More precisely, the finite element method
is adopted in the conductor region V, while the
boundary element method is used in the air R}V
including the coil region. The practical implemen-
tation of numerical technique is owed to Matsuoka
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(1987). The nodes of finite elements are given by the
coordinates that depend on the unknown parameter
vector q = {g;}¥,. From eqn.(22), the crack region
is defined on

CT X [h(Q;xl7$2)7 l3]
for the outer crack

V. =< . 26
T(q) CT X [Oa h(q7 $1,$2)] ( )

for the inner crack
where C,. implies the closure set of C; and |-, -] de-

notes the closed interval on z3-axis. Thus the do-
main of the conductor with the unknown crack is
defined by

Vela) = Vo — Vi(q) (27)

where V) means the ‘perfect’ sample material with-
out crack, i.e.,

Vo={2=(z1,22,23) |0O<a; <l;, (i=1,2,3) }.

The corresponding boundary with the surface crack
is given by S.(q). Let us choose U}’V"h:l{z/}fv" }fvz"l as
a set of basis functions in H'(V(q)). The approxi-

mation subspaces can be chosen as:
N, N, N,
HNh:Span{z/th 2",~-~,1/JN:}. (28)

Then the magnetic potential and time integration of
the electric scalar potential are approximated by

A

1%

Np

N,
> {Af A5, 453",
i=1

Np
PR
=1
Let

{Ad} = {47, 45, 45)",  {@} = {2}

be the coefficient vector of A and @, respectively.
Then the hybrid FEM-BEM scheme for eqns. (16)
and (17) with eqn.(12) is represented by

Aqg

[L + K](q) { . } ={FHa;J,), (29

( See Matsuoka (1987) for more details ).
eqn.(29), L is the element matrix given by

In

[L1] 0 0 [Lo1]
0 [L1] 0 [La2]

(L] = 0 0 AR (30)
[Lon])" [Laa]"  [Los]™  [Ls]

where the (k,!) € {1,---, Ny} component of each
block matrix is denoted by

Ll :/V ( ){ i(vw}fh)-(Wi“)ijwévw{“} da
q

Ho

(31)

Ny
[Lomlr = ojw ]vah L dx form=1,2,3,

v 9Tm
(32)

and

[L3] = woojwlL,], (33)

respectively. Denoting the source point by z; and
from eqn.(11), the boundary element vectors {U*}
and {0U*/0n} are defined by

{U Y = u* (g, @), (34)

oL o)
an [, am "

respectively. The element matrix K in eqn.(29) is

for z,x, € Ss(q), (35)

then given by

[Ko] 0 0
[K]=] 0 [Ko] O [, (36)
0 0 [Ko

where
1 _ -
(Ko] = 5 {[M)[G]7"[H] + (IM][G]*[H])T} -
The (k, [)-component of the matrix M is represented
by

1
My = — [
Ho Js.(q)

™| ]dr, (37)

Scla)

Se{q)

and the matrices [G] and [H] are a single layer and
double layer potentials given by

oM
on

1
[Glu=—
Ho Sc(aq

){U*(q)}k[

J ar, (38)

Seq)
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[H]kl:i { o (Q)}k[wzj\/h

Ho Se(q) (971,

} dar, (39)

EACY

respectively. The element vector of eqn.(29) is given
by

{FY=IIMIIGT Y (MG Y Fe ) (MG (R,

{Foly = / {Ua)}pJ) dz forn=1,2,3,
Vl:
where {U*} is given by
{U e = u(zg,2) forz € V. x, € S(q).  (40)

Thus the model output of impedance trajectory is
represented by

AZAqLﬂ—{CMQT{id} (1)
d

where {C'} is the interpolation vector corresponding
to the model output eqn.(20) given by

{C} ={C1,C1,C1. Ca} (42)

where the k-th (k € {1,---, N} }) component of each
block vector is given by

{Ol}k:wuowv;{{ / U:(qufhdw} dl, (43)
. Vela)

{Cz}k:—auowQN;{{ / U;(q)divw,g’hdm} dl.
. Ve(a)

(44)
Consequently, the parameter-to-output mapping

(q7 Jb) — AZ{i(q7 Js) (45)
is obtained by solving eqns. (29) and (41).
3.3. Parameter Estimation Problem :

The parameter estimation problem is formu-
lated as follows:

Given an appropriate frequency w and a set of cur-
rent forces {J¢ ;V:"I in accordance with the coil move-
ment, and measure the corresponding impedance
trajectory Y, = {Ydl}f\:”1 find the optimal q = q*
which minimizes the output least square error

2

N,
1 ¢ [ <]
Blo) =5 ) [aZita 3 -vi (o)

with respect to q € Quq subject to eqns. (29) and
{41).

To solve the above parameter estimation problem,
so many discrete optimization routines are applica-
ble ( See Kojima, 1996 ). For the numerical results
reported in this paper, the trust region algorithm
with linear inequality constraints ( Carter, 1987 )
were implemented. The advantage of this algorithm
is its global convergence properties; namely, this al-
gorithm make it possible to obtain convergence to a
critical point ( optimal solution ), even from start-
ing points ( initial guess ) that are far away from
the optimal solution.

Estimation Algorithm: Let §‘© be the initial
guess and the trust region A be given. Set the

parameter u € (0,1). For k = 1,2,---, iterate the

following step:

Step 1: Compute E(§*) and the model (g%
defined by

¢ (a) = B@")+ < {g@™)}. {6a} >
1 .
+5 < {da}, B@"){sa} > (47)
where q = q — @® and where {g} and [B] denotc

the gradient and the approximated Hessian of the
cost eqn. (46).

Step 2: Determine an approximate solution éq = sy,
to subproblem

min {6"(@" +6a) | [oa| <A} (ag)

Step 3: Compute

o _ E@™ +s) -~ B@)
P Bsk)

(49)

Step 4: If p*) > 4 then %41 = §%) + 5. Other-
wise gF ) = gk,

Step 5: Update the model ¢(*) and the trust region
A®) in the appropriate manner.

The gradient of the cost eqn. (47) with respect to
the unknown parameter g can be evaluated by the
discrete analogue of the material derivative. Using
the co-state approach, the gradient of the cost can
be computed as follows:
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{8(@}m = ;q—i@

& 9AZy(q, 30

e (2 1) - )

i=1

oF

§{<{3qm }(Zd(Q,J) Y, {gi}(q,J1)>
d

(e RS

where {A%, ®%}7 is the solution of the adjoint sys-
tem eqn. (29):

[L+K]T<q>{"‘*}=—{0}< >({0}<q>T{§j}—Y;> .
(51)

4. Computation of the Gradient

There are several ways of evaluating the gradi-
ent of the cost with respect to the boundary shape.
By change of the variables which bring the variable
domains into a fixed domain the gradient of the cost
can be computed using the sensitivity equation with
the unknown coefficients. This method was success-
fully used in the inversions of the thermal tomogra-
phy (Banks and Kojima, 1989, Banks et al, 1990).
However there exist inherent limitations for the ap-
plicability to QNDE due to the complexity of practi-
cal geometrical constraints, such as the shape of the
crack. Therefore, in this paper, the material deriva-
tive is adopted for evaluating the unknown shape of
crack ( See Pironneau, 1983 ). More precisely, the
gradient of the cost eqn. (47) can be evaluated by
perturbing the nodes at the surface crack boundary
and by moving the associated interior nodes. For the
economy of computational volumes, the conductor
domain V(q) is decomposed into two sub-domains,
ie.,

(52)

YU v

where V,(q) denotes the region of the interest asso-
ciated with the neighborhood of the surface crack.
The region of the interest in the identification prob-
lem is selected as

Vs(q) = {w = (z1,%2,23) ’ff <z < fgj,(z =1,2),

i A i _ -
aq—m}(Q: Js)v{ (I)rl }(q7‘]s)>} (m‘ 1725' vM)v (50)

I

O Moving finite element node
x Perturbed boundary node
o Fixed element node

Fig. 3 Sectional plan of the finite element decomposition
in the region of interest

h(q; 21, z2)<z3<l3 for the outer crack,

O<z3<h(q;z1,x2) for the inner crack} (53)

In V,(q), ZF and ¥ must be chosen as

lh - l

0<'a‘:1L<lTCl7 I;Cl<§§’<l1 (54)
s —¢ 1

0<zk < 22cw, 2zew<x2<lz (55)

Let X = {x} = (zf,2%,2)}Y" be the set of the
coordinates of the nodes in the conductor and those
are assumed to be constructed as

X = {X? 11'V=51 € Vi(a), X, = {X?}INJNS+1 € Vo.
(56)
Furthermore, the set of the nodes in the region of

the interest is divided into three parts:

a) =X; (J X (q) ([ Xala)

where X, denotes the set of the fixed nodes, X,
denotes the set of the nodes at the surface crack of
the boundary, and X, is the set of the moving nodes
associated with the set X,.. Figure 3 illustrates the

(57)
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sectional plan of the finite element decomposition  The finite element decomposition of V;.(q) can be de-
in the region of interest. As depicted in Fig.3, the  termined by the coordinate systems X,.. Let {ei}fi’l
coordinates of nodes in X,(q) are determined by and {e?}ﬁl be the finite elements covering V,.(q)
and the related boundary S,(q). It is noted that

X the set of finite elements {e;(q)}i, and the set of
b

Ha) = (i, 25, hlg,zi,23)) € Xo(q).  (58)
The coordinates of X, can be determined by the  boundary elements {e? (‘l)}f(:rl are determined from
fixed nodes X; and X,. Namely, all nodes of X, equs. (58) and (59). To compute eqn. (50), the
are constructed from sequence of the mappings {Ti(q)}firl of each finite
element to a reference element such that

xi(a) = (a1, 7. Pilqih)) € Xa,  (59)
ei(q) =T(q)oé fori=1,--- K, (61)

where ®; denotes the continuous mappings of the
depth function h(q) to x%. For instance, the map- a8 depicted in Fig. 4. Similarly, the set of mappings

b
ping ®; for the inner crack case is given by {T(a )}Z 7, can be constructed as:
__Jm(i) x h(q, 1, 22)/N; (inner crack) ed(q) =TH(q)oe" fori=1,-- K} (62)
m(® h+(l3—h(q, 1, 23))/N, (outer crack)

(60) as depicted in Fig. 4. Then the partial derivative of
the matrix [L] can be evaluated as
(m(i)=1,--- N, ; i=1,2,---, M).

1
[8L1/8qm] 0 0 [0L21 /6qm}
aL _ 0 [OLl/aqm] 0 [8L22/6qm} _ L
{3% (q} - 0 0 0Ly /0qm]  [0L2s/0au] form=1,2,---, M,
[0L21/0¢)T  [0L22/0qm)T  [0L2s/0qm|"  pocjwlOL1/0gm] (63)
where
aLl h C —1/7,5,Nn Nk 3 V. =
B Z@qm {000 (9@ (VR (OO ool e i) | s, (60

(] o S B oo siv,

In order to evaluate the sensitivity of the matrix [K](q), the partial derivative of the matrices [M|(q), [G](q).
and [H](q) are given by

oM 1 _—
{&Zm} ki " ho ./éb <wk éb

[aqm} y / Z aqm {0 @b {(VTH@) V3 n(@) |

i(q)H di forn=1,23.  (65)

Kb

B)

qm

=N
l

Hdet @Ti’)(q)ﬂ dr, (66)

Pa)|d @7)

{8qnj - / Z 8qm {(V12@) VT @ n(@} 57| | Jdet VIV@|] D, (68)
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Furthermore, the vectors {F,, }(q), {C1}(q), and {C2}(q) are computed as

OF, | _ 3] . I B
{5‘1_7;}1@ = /... B HUX Q) k] J) dx for n=1,2,3, (69)

5. Computational Experiments

All experiments were carried out at Nuclear
Engineering Ltd. in Osaka, Japan. First part of
this section is devoted to the experimental set-up
at the laboratory. Secondly, a forward analysis de-
fined by eqn. (45) is tested for the purpose of the
feasibility of the modeling of the inspection process.
This is followed by a discussion in which the validity
of the proposed algorithm using laboratory data is
demonstrated.

5.1. Experimental Set-up :

Throughout experiments, a test piece is IN-
CONEL600 which is used for the steam generator
tubes of pressurized water type nuclear plants. The
magnetic permeability uo and the conductivity o

: T.(q) q
/:- 17 _>
3 e.(@ =Ti(Qoe
(a) Finite element
T{(a)
_>
<b efg) = T oe?

(b) Boundary element

Fig. 4 Transformation mapping of finite and boundary
elements

W) "o U2 (a)vy

aC, ) f{ / S0
ST N 2
{an}k Hos ( &b ; O, [

8Cy ) & 9
(e}, = oo . S [

det VT(q) H di) dl, (70)

Lo U () (divqp;“) ’det @Tf(q)u df}dl. (71)

were taken as
o = AT x 1077 (H/m) o = 1.0x10° (S/m). (72)

The size of the test piece was a square plate such
that

i =10,=20, [3=1.25 (mm).

Test pieces which have different crack shapes were
made using electric discharge machining (EDM
crack). The width and the Jength of the EDM crack

was

=10 ¢, =02 (mm)

and the crack was located in C, given by eqn. (22).
The several types of the EDM cracks which have
different depth from 20 to 60% were used in the
experiments. The coil has axisymmetric shape and
is made of 140 turns. The height of the coil is 0.8
mm and its outer and inner diameters are 3.2 and 1.2
mm, respectively. Figure 5 depicts a pancake type
probe coil manufactured in this experiment and the
measurement set-up of experimental works. Figure
6 shows the schematic drawing of the experimental
setup. A test sample is fixed on a x; — x5 translation
stage driven by servo-mechanism. The lift-off which
means the distance between the test piece and the
bottom of the pancake coil can be set by z3 axial
dial. A test piece on the x; — x2 translation stage
moves parallel to the x; direction, while the coil is
fixed. The crack center is defined as zo = 10 mm.
Impedance was measured from the center, z2 = 0
mm till zo = 10 mm at every 1 mm. The lift-off was
taken as 0.5 mm. The alternating current applied
to the probe coil was set as 300 kHz. Alternating
current is supplied by an impedance analyzer.
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&
N
1.6R
—
Xj
x! I 0.8
xkhoTos
—5—
Sample material 1.25
y

Fig. 5 Pancake type probe coil and measurement set-up
in the experiments

Pancake

=
Coil |
Lock in

O

LCR CPU
Meter

3D-Stage

Fig. 6 : Schematic drawing of the experimental set-up

5.2. Forward Analysis for Parameter-to-
Output Mapping :

The depth of EDM crack was approximated
by eqn. (23). In the experiments, linear spline is
adopted which implies the first order of B-splines.
The dimensions of the unknown parameter vectors
q were taken as M = 6. The corresponding numbers
of knot sequences Ayy in eqn. (24) were chosen as

Ay = {5.0,7.0,9.0,11.0,13.0,15.0}.

The test sample is divided into a finite number of
brick clements {e;} fi’l and a number N}, of nodes de-
fined by {x; = (z}, 2%, 24)} X" are selected in V(q).
Each element is preassigned as an axiparallel rect-
angle with eight nodes at the vertices as shown in
Fig. 7. The number of finite elements and nodes

in the numerical experiments reported on here was

X

X
/

o

0 T X

Fig. 7 Finite and boundary clement decomposition of
sample specimen in the experiments
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Fig. 8 ECT signals and simulated impedance trajectory
for EDM crack with 1D40% depth

set as Kp, = 474 and N;, = 720, respectively. The
corresponding boundary elements were taken from
the surface of the finite clements of the test piece.
Namely, each boundary element becomes axiparal-
lel rectangle with four nodes at the vertices. In the
experiments, the number of boundary elements and
nodes were taken as K ,l; = 442 and N? = 444, re-
spectively. Figure 7 illustrates the finite and bound-
ary element decomposition of the conductor.

The restriction of L/)ZN " to any finite element e;
is given by a bilinear basis functions. To compute
the impedance trajectory, the number of coil posi-
tions was set as IV, = 9 and those were located at

28 = 0.002,25 = 0.004, - - -, 28 = 0.018.

Figures 8 and 9 represent the measurement data and
the corresponding numerical solutions for the inner

and outer defect with 40% depth, respectively.
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Fig. 9 ECT signals and simulated impedance trajectory
for EDM crack with OD40% depth

Table 1 Category of crack shape in the experiments of
inverse analyses

Experiments|Location of Crack] Shape of Depth
(1) Outer Defect |Rectangular (60%)
2) Inner Defect |Rectangular (40%)
(3) Outer Defect |Slope (60% — 20%)
(4) Inner Defect |Slope (20% — 60%)

5.3. Inverse Analysis with Experimental
Data :

In this subsection, results of using the proposed
estimation procedures are reported. Test examples
were performed for the crack shapes described in
Table 1.

value of the initial guesses were chosen as

Throughout numerical experiments, the

@ = {0.625,0.625,0.625,0.625,0.625,0.625}

which implies the 50% depth ( ratio to plate thick-
ness ) of the crack. For the implementation of the
estimation algorithm given in Section 3, a Fortran
software package “OPT2” ( See Carter 1987 ) was
used. The evaluation of the Hessian matrix B(q) is
the computationally expensive parts of the proposed
algorithm. Hence the Hessian was computed us-
ing the Broyden-Fletcher-Goldfarb-Shano (BFGS)
secant update with safeguarding Hessian approxi-
mation ( Also see Broyden for BFGS 1970 and see
Carter 1987 for Hessian approximation ). In each ex-
periment, the optimization routine was implemented
using rectangular trust regions. Table 2 reports the
estimated parameter results and results of estimated

,,,,,,,,,,,, Estimate

—— True

(a) Inner defect

............ Estimate

2 —  True

(b) Outer defect

Fig. 10 True and estimated crack shape for EDM crack
with 60% depth

............ Estimate

. —  True

,,,,,,,,,,,, Estimate

—— Prue

+ + + + + +
5.0 7.0 90 11 13. 15.

(b) Outer defect

Fig. 11 True and estimated crack shape for EDM crack
with 20 — 60% depth

shape and true shape are depicted in Figs. 10 and
11.

6. Concluding Remarks

A feasible computational method was proposed
for detecting and characterizing crack in steam gen-
erator tubes of nuclear plants using the advanced
ECT technique. The parameter estimation code was
developed based on the hybrid use of FEM-BEM
code that makes it possible to evaluate the probe
impedance trajectory. To date, measurements for
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Table 2 True and estimated values of the unknown pa-
rameters q

Defect q1 qz2 s g4 g5 qs | Accuracy

Model [mm] | [mm] | [mm] | [mm] | [mm] | [mm 0

qqul)

(1) 0% |True|0.750(0.750|0.750(0.750|0.750|0.750] 17.07
OD Est. 10.703]0.703|0.725|0.703|0.703{0.795

(2) 0% |True|0.500|0.500|0.500]0.500|0.500]0.500] 45.45
1D Hst. |0.511(0.511({0.511{0.511(0.511(0.511

(3) Slope|True|0.75010.650(0.550(0.450{0.350{0.250| 8.013
ODb Est. |0.6760.627|0.574(0.41510.238(0.326

(4) Slope | True|1.000(0.900|0.800(0.700]0.600[0.500| 4.162

1D Hst. |0.96010.901(0.6290.318|0.5830.667

the EDM cracks with 20 — 60% depth and with
20 — 60% slope were carried out and the cstima-
tion package was tested with these resulting data.
The several results reported in Section 5 are repre-
sentative of the findings obtained in these experi-
ments. In all cases, the algorithm performed as well
as or better than it did in the examples in Section
5. This fact provides rather conclusive evidence that
structural flaws on the steam generator tubes can be
successfully detected using the recent technology of
the eddy current inspection. The current research
includes both experimental and computational in-
vestigations to further refine the proposed method
as well as to test other types of specimens { tube
shape ) and flaws ( natural cracks ) with regard to
ease and accuracy in detection and characterization
of cracks using the advanced ECT technique. The
computational cost is the crucial part of the practi-
cal implementation of the proposed method. The of
forthcoming intelligent analysis might reduce those
costs. Exploration of this alternative is currently in
progress.

Acknowlodgements

This study was supported in part by the Re-
search Committee on Advanced Eddy Current Test-
ing Technology of the Japan Society of Applied
Electromagnetics and Mechanics through a grant
from 5 PWR utilities and Nuclear Engineering Ltd.
Thanks are extended to Messrs. Okamoto and Ohno
who were my former students at Osaka Institute of
Technology for their valuable computational works.

References

Banks, H.T. and Kojima, F. (1989) Boundary
Shape Identification Problems in Two-dimensional
Domains related to Thermal Testing of Materials,
Quart. Appl. Math., Vol. 47, pp. 273-293

Banks, H.T., Kojima, F. and Winfree W.P. (1990)
Boundary Estimation Problems arising in Thermal
Tomography, Inverse Problems, Vol. 6, pp. 121-132

Bowler, J.R., Jenkins, S.A., Sabbagh, L.D.,
and Sabbagh, H.A. (1991) Eddy-current Probe
Impedance due to a Volumetric Flaw, J. Appl.
Phys., Vol. 70, No. 3, pp. 1107-1114

Bowler, J.R. (1995) Eddy Current Inversion using
Gradient Method, Studies in Applied Electromag-
netics and Mechanics, Vol. 8, 10S Press, Amster-
dam, the Netherlands, pp. 31-40

Broyden, C.G. (1970) The Convergence of a Class of
Double-Rank Minimization Algorithm, J. Institute
of Mathematics and Its Applications, Vol. 6. pp.

76-90

Carter, R.G. (1987) Safeguarding Hessian Approxi-
mations in Trust Region Algorism, Technical Report,
TR87-12, Department of Mathematical Sciences,
Rice University

de Boor, C. (1978) Practical Guide to Splines,
Springer, New York

Harrison, D.J., Jones L.D., and Burke S.K. (1996)
Benchmark Problems for Defect Size and Shape De-
termination in Eddy-current Nondestructive Evalu-
ation, J. Nondestructive Evaluation, Vol. 15, No. 1,
pp. 21-34

Kojima, F. (1996) Computational Methods for In-
versc Problems in Engineering Scicnces. Interna-
tional Journal of Applied Electromagnetics and Me-

chanics, Vol. 7, pp. 1-16

Matsuoka, F (1987) Calculation of a Three Dimen-
sional Eddy Current by the FEM-BEM Coupling
Method, Proc. IUTAM Conf.
tomechanical Interactions in Deformable Solids and
Structures, North-Holland pp. 169-174

on FElectromagne-



634 Fumio Kojima

Pironneau, O (1983) Optimal Shape Design for El-
liptic Systems, Springer, New York.

Sabbagh, H.A. and L.D. Sabbagh (1986) An Eddy-
current Model for Three-dimensional Inversion,
IEEE Trans. on Magnetics, Vol. MAG-22, No. 4,
pp. 282-290

Takagi, T. et al. (1994) Benchmark Models of Eddy
Current Testing for Steam Generator Tube: Experi-
ment and Numerical Analysis, Int. J. Applied Elec-
tromagnetics in Materials, Vol. 5, pp. 149-162.

Takagi, T. et al. (1995) ECT research activities in
JSAEM - Benchmark models of eddy current testing
for steam generator tube (Part 1), Studies in Applied
FElectromagnetics and Mechanics, Vol. 8, I0S Press,
Amsterdam, the Netherlands, pp. 253-264.

Takagi, T. et al. (1996). Electromagnetic NDE re-
search activities in JSAEM, Studies in Applied Elec-
tromagnetics and Mechanics, Vol. 12, I0OS Press,
Amsterdam, the Netherlands, pp. 9-16.



