DOI QR코드

DOI QR Code

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test

Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추

  • Received : 2012.09.17
  • Accepted : 2013.02.18
  • Published : 2013.06.01

Abstract

The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.

금속 재료의 수소취화 현상에 대한 분석은 수소플랜트의 안전성 평가를 위해 매우 중요하다. 수소환경하 취화된 재료의 기계적 물성과 파괴인성은 구조 건전성 평가에 가장 기본적이며 중요한 자료이다. 본 논문은 최근에 개발된 유한요소 해석 기반 현상학적 손상해석을 소형펀치 실험에 적용하고 Inconel 617 재료의 대기 중 소형펀치 실험결과와 비교 함으로써 손상해석 기법의 적용 타당성을 보였다. 또한 역변환 기법을 사용하여 소형펀치 실험으로부터 인장물성을 예측하고 인장실험으로부터 구한 재료 물성과 비교하여 적용 가능성을 검증하였다. 검증된 결과를 바탕으로 수소취화된 시편에 대한 소형펀치 실험결과에 역변환 기법과 손상해석을 적용하여 수소취화 된 재료의 기계적물성과 파괴인성을 예측하였다.

Keywords

References

  1. Gurson, A. L., 1977, "Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1- Yield Criteria and Flow Rules for Porous Ductile Media," Journal of Engineering Materials and Technology, Vol. 99, pp. 2-15. https://doi.org/10.1115/1.3443401
  2. Tvergaard, V., 1982, "On Localization in Ductile Materials Containing Spherical Voids," International Journal of Fracture, Vol. 18, pp. 237-252.
  3. Chu, C. C. and Needleman, A., 1980, "Void Nucleation Effects in Biaxially Stretched Sheets," Journal of Engineering Materials and Technology, Vol. 102, pp. 249-256. https://doi.org/10.1115/1.3224807
  4. Rivalina, F., Besson, J., Pineaua, A. and Di Fant, M., 2001, "Ductile Tearing of Pipeline-Steel Wide Plates II-Modeling of In-Plane Crack Propagation," Engineering Fracture Mechanics, Vol. 68, pp. 347-364. https://doi.org/10.1016/S0013-7944(00)00108-9
  5. Dugdale, D. S., 1960, "Yielding of Steel Sheets Containing Slits," J Mech Phys Solids, Vol. 8, pp. 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  6. Barenblatt, G. I., 1962, "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture," Adv Appl Mech, Vol. 7, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  7. Oh, C. S., Kim, N. H., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim, W. S., 2010, "A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model," Engineering Fracture Mechanics, Vol. 78, pp. 124-137.
  8. Kim, N. H., Oh, C. S., Kim, Y. J., Yoon, K. B. and Ma, Y. H., 2011, "Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results," International Journal of Pressure Vessels and Piping, Vol. 88, pp. 434-447. https://doi.org/10.1016/j.ijpvp.2011.07.006
  9. Foulds, J. R., Woyyowitz, P. J., Parnell, T. K. and Jewett, C. W., 1995, "Fracture Toughness by Small Punch Testing," Journal of Testing and Evaluation, Vol. 23, pp. 3-10. https://doi.org/10.1520/JTE10392J
  10. Sainte Catherine, C., Messier, J., Poussard C., Rosinski, S. and Foulds, J., 2002, "Small Punch Test: EPRI-CEA Finite Element Simulation Benchmark an Inverse Method for the Estimation of Elastic Plastic Behavior," Small Specimens Test Techniques, Vol. 4, pp. 350-370.
  11. Egan, P., Whelan, M. P., Lakestani, F. and Connelly, M. J., 2007, "Small Punch Test: An Approach to Solve the Inverse Problem by Deformation Shape and Finite Element Optimization," Computational Materials Science, Vol. 40, pp. 33-39. https://doi.org/10.1016/j.commatsci.2006.10.021
  12. Husain, A., Sehgal, D. K. and Pandey, R. K., 2004, "An Inverse Finite Element Procedure for Determination of Constitutive Tensile Behavior of Materials Using Miniature Specimen," Computational Materials Science, Vol. 31, pp. 84-92. https://doi.org/10.1016/j.commatsci.2004.01.039
  13. ABAQUS Version 6.9. User's Manual, 2009, Dassault Systems Simulia Corporation, USA.
  14. Rice, J. R. and Tracey, D. M., 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids, Vol. 17, pp. 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  15. Louthan, M. R. jr., Caskey, G. R. Jr., Donovan, J. A. and Rawl, D. E. Jr., 1972, "Hydrogen Embrittlement of Metals" Materials Science and Engineering, Vol. 10, pp. 357-368. https://doi.org/10.1016/0025-5416(72)90109-7
  16. Hicks, P. D. and Altstetter, C. J., 1990, "Internak Hydrogen Effects on Tensile Properties of Iron-and Nickel-Base Superalloys," Metallurgical Transactions A, Vol. 21, Issue 1, pp. 365-372. https://doi.org/10.1007/BF02782416