• Title/Summary/Keyword: Finite Memory

Search Result 343, Processing Time 0.022 seconds

Induction Heating Device for Dental Implant Removal (인공치아의 임플란트 탈착을 위한 유도가열장치 연구)

  • Lee, Sang-Myung;Seo, Young;Song, Chang-Woo;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.305-311
    • /
    • 2016
  • Induction heating is the process in which an electrically conducting object (usually a metal) is heated by electromagnetic induction through heat generated in the object by eddy currents. The main advantage of an induction heating device is the generation of the heat inside the target object itself. Hence, non-contact and safe heating devices are widely used in many industrial and medical fields. Recently, a new dental implant system was developed using a shape-memory alloy, wherein an artificial tooth could be easily removed from the dental implant by heating. This paper discusses the development of an induction-heating device to remove the dental crown in the new implant system. First, the finite element simulation of electromagnetic and thermal coupling analysis was implemented to obtain the temperature distributions of the target object for various frequencies, input currents, and coil shapes. Based on the simulation results, experiments were conducted by using prototypes, and an induction heating device was developed to remove the dental crown from the implant.

Building frame-pile foundation-soil interactive analysis

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.397-411
    • /
    • 2009
  • The effect of soil-structure interaction on a simple single storeyed and two bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the three dimensional finite element analysis with realistic assumptions. The members of the superstructure and substructure are descretized using 20 node isoparametric continuum elements while the interface between the soil and pile is modeled using 16 node isoparametric interface elements. Owing to viability in terms of computational resources and memory requirement, the approach of uncoupled analysis is generally preferred to coupled analysis of the system. However, an interactive analysis of the system is presented in this paper where the building frame and pile foundation are considered as a single compatible unit. This study is focused on the interaction between the pile cap and underlying soil. In the parametric study conducted using the coupled analysis, the effect of pile spacing in a pile group and configuration of the pile group is evaluated on the response of superstructure. The responses of the superstructure considered include the displacement at top of the frame and moments in the superstructure columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation used in the study. The percentage variation in the values of displacement obtained using the coupled and uncoupled analysis is found in the range of 4-17 and that for the moment in the range of 3-10. A reasonable agreement is observed in the results obtained using either approach.

Low Power Architecture of FIR Filter for 2D Image Filter (2D Image Filter에 적합한 저전력 FIR Filter의 구현)

  • Han, Chang-Yeong;Park, Hyeong-Jun;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.663-670
    • /
    • 2001
  • This paper proposes a new power reduction method for 2D FIR (Finite Impulse Response) filters. We exploited the spatial redundancy of image data in order to reduce power dissipation in multiplication of FIR filters. Since the higher bits of input pixels are hardly changed, the redundant multiplication of higher bits is avoided by separating multiplication into higher and lower parts. The calculated values of higher bits are stored in memory cells, cache such that they can be reused when a cache hit occurs. Therefore, we can reduce power in 2D FIR Filter modules about 15% by using the proposed separated multiplication Technique (SMT).

  • PDF

A Study on the Extraction of Parasitic Capacitance for Multiple-level Interconnect Structures (다층배선 인터커넥트 구조의 기생 캐패시턴스 추출 연구)

  • 윤석인;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.44-53
    • /
    • 1999
  • This paper are reported a methodology and application for extracting parasitic capacitances in a multi-level interconnect semiconductor structure by a numerical technique. To calculate the parasitic capacitances between the interconnect lines, we employed finite element method (FEM) and calculated the distrubution of electric potential in the inter-metal layer dielecric(ILD) by solving the Laplace equation. The three-dimensional multi-level interconnect structure is generated directly from two-dimensional mask layout data by specifying process sequences and dimension. An exemplary structure comprising two metal lines with a dimension of 8.0$\times$8.0$\times$5.0$\mu\textrm{m}^3/TEX>, which is embedded in three dielectric layer, was simulated to extract the parasitic capacitances. In this calculation, 1960 nodes with 8892 tetrahedra were used in ULTRA SPARC 1 workstation. The total CPU time for the simulation was 28 seconds, while the memory size of 4.4MB was required.

  • PDF

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF

Design of Programmable and Configurable Elliptic Curve Cryptosystem Coprocessor (재구성 가능한 타원 곡선 암호화 프로세서 설계)

  • Lee Jee-Myong;Lee Chanho;Kwon Woo-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • Crypto-systems have difficulties in designing hardware due to the various standards. We propose a programmable and configurable architecture for cryptography coprocessors to accommodate various crypto-systems. The proposed architecture has a 32 bit I/O interface and internal bus width, and consists of a programmable finite field arithmetic unit, an input/output unit, a register file, and a control unit. The crypto-system is determined by the micro-codes in memory of the control unit, and is configured by programming the micro-codes. The coprocessor has a modular structure so that the arithmetic unit can be replaced if a substitute has an appropriate 32 bit I/O interface. It can be used in many crypto-systems by re-programming the micro-codes for corresponding crypto-system or by replacing operation units. We implement an elliptic curve crypto-processor using the proposed architecture and compare it with other crypto-processors

A Study on the Extraction of Cell Capacitance and Parasitic Capacitance for DRAM Cell Structures (DRAM 셀 구조의 셀 캐패시턴스 및 기생 캐패시턴스 추출 연구)

  • Yoon, Suk-In;Kwon, Oh-Seob;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.7-16
    • /
    • 2000
  • This paper reports a methodology and its application for extracting cell capacitances and parasitic capacitances in a stacked DRAM cell structure by a numerical technique. To calculate the cell and parasitic capacitances, we employed finite element method (FEM), The three-dimensional DRAM cell structure is generated by solid modeling based on two-dimensional mask layout and transfer data. To obtain transfer data for generating three-dimensional simulation structure, topography simulation is performed. In this calculation, an exemplary structure comprising 4 cell capacitors with a dimension of $2.25{\times}1.75{\times}3.45{\mu}m^3$, 70,078 nodes with 395,064 tetrahedra were used in ULTRA SPARC 10 workstation. The total CPU time for the simulation was about 25 minutes, while the memory size of 201MB was required. The calculated cell capacitance is 24.34fF per cell, and the influential parasitic capacitances in a stacked DRAM cell are investigated.

  • PDF

SURFACE RECONSTRUCTION FROM SCATTERED POINT DATA ON OCTREE

  • Park, Chang-Soo;Min, Cho-Hon;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.31-49
    • /
    • 2012
  • In this paper, we propose a very efficient method which reconstructs the high resolution surface from a set of unorganized points. Our method is based on the level set method using adaptive octree. We start with the surface reconstruction model proposed in [20]. In [20], they introduced a very fast and efficient method which is different from the previous methods using the level set method. Most existing methods[21, 22] employed the time evolving process from an initial surface to point cloud. But in [20], they considered the surface reconstruction process as an elliptic problem in the narrow band including point cloud. So they could obtain very speedy method because they didn't have to limit the time evolution step by the finite speed of propagation. However, they implemented that model just on the uniform grid. So they still have the weakness that it needs so much memories because of being fulfilled only on the uniform grid. Their algorithm basically solves a large linear system of which size is the same as the number of the grid in a narrow band. Besides, it is not easy to make the width of band narrow enough since the decision of band width depends on the distribution of point data. After all, as far as it is implemented on the uniform grid, it is almost impossible to generate the surface on the high resolution because the memory requirement increases geometrically. We resolve it by adapting octree data structure[12, 11] to our problem and by introducing a new redistancing algorithm which is different from the existing one[19].

A Simple Analysis of the Cylindrical Shell Subjected to a Nonaxisymmetric Load (비축대칭 하중을 받는 원통형 쉘의 단순화 해석)

  • 남문희;이관희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2000
  • When one considers the property of the axisymmetry, an analysis of an axisymmetric shell subjected to unaxisymmetric loading can be employed to save time and computer memory space. If one considers the Fourier series of the circumference direction of loads and displacements, an axisymmetric tank subjected to a nonaxisymmetric load can be treated as a frame element. Using the Fourier series, the authors derived the stiffness matrix of the cylindrical shell subjected to unaxisymmetric loading by the usual finite element method, and converted the stiffness matrix of a frame element into a transfer matrix by rearranging the stiffness matrix to apply the transfer matrix method. Here the most significant purpose of this paper is to achieve the fewest number of simultaneous equations for analysing an axisymmetric shell subjected to a nonaxisymmetric load. The results of the proposed method of the analysis of the cylindrical shell subjected to a wind load and a water load show no differences when compared to the other methods.

  • PDF

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF