• Title/Summary/Keyword: Finite Element Approximation

Search Result 358, Processing Time 0.026 seconds

T-spline Finite Element Method for CAD/CAE Integrated Approach (CAD/CAE 통합 접근을 위한 T-스플라인 유한요소법)

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • T-splines are recently proposed geometric modeling tools. A T-spline surface is a NURBS surface with T-junctions and is defined by a control grid called T-mesh. Local refinement can be performed very easily for T-splines while it is limited for B-splines or NURBS. Using T-splines, patches with unmatched boundaries can be combined easily without special technique. In this study, the analysis methodology using T-splines is proposed. In this methodology, T-splines are used both for description of geometries and for approximation of solution spaces. Two-dimensional linear elastic and dynamic problems will be solved by employing the proposed T-spline finite element method, and the effectiveness of the current analysis methodology will be verified.

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

FINITE ELEMENT MODEL TO STUDY TWO DIMENSIONAL UNSTEADY STATE CYTOSOLIC CALCIUM DIFFUSION

  • Tewari, Shivendra Gajraj;Pardasani, Kamal Raj
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.427-442
    • /
    • 2011
  • Calcium is a vital second messenger for signal transduction in neurons. Calcium plays an important role in almost every part of the human body but in neuronal cytosol, it is of utmost importance. In order to understand the calcium signaling mechanism in a better way a finite element model has been developed to study the flow of calcium in two dimensions with time. This model assumes EBA (Excess Buffering Approximation), incorporating all the important parameters like time, association rate, influx, buffer concentration, diffusion constant etc. Finite element method is used to obtain calcium concentration in two dimensions and numerical integration is used to compute effect of time over 2-D Calcium profile. Comparative study of calcium signaling in two dimensions with time is done with other important physiological parameters. A MATLAB program has been developed for the entire problem and simulated on an x64 machine to compute the numerical results.

[ $L_p$ ] ERROR ESTIMATES AND SUPERCONVERGENCE FOR FINITE ELEMENT APPROXIMATIONS FOR NONLINEAR HYPERBOLIC INTEGRO-DIFFERENTIAL PROBLEMS

  • Li, Qian;Jian, Jinfeng;Shen, Wanfang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 2005
  • In this paper we consider finite element methods for nonlinear hyperbolic integro-differential problems defined in ${\Omega}\;{\subset}\;R^d(d\;{\leq}\;4)$. A new initial approximation of $u_t(0)$ is taken. Optimal order error estimates in $L_p$ for $2\;{\leq}\;p\;{\leq}\;{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2\;{\leq}\;p\;{\leq}\;{\infty}$ are demonstrated as well.

  • PDF

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

A Hybrid Method for Vibration Analysis of Rotor Systems (회전축계의 진동해석을 위한 Hybrid법에 관한 연구)

  • 양보석;최원호
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • The simplest method which has been used extensively for vibration analysis is the transfer matrix method introduced by Myklestad and was later extended by many researchers. The crude approximation results in considerable error on the predicted natural frequencies and to increase the accuracy the number of elements used in the analysis must be increased. In addition, numerical instability can occur as a result of matrix multiplication. Also the main disadvantage of the finite element method is the large computer memory requirements for complex systems. The new method proposed in this paper combines the transfer matrix and finite dynamic element techniques to form a powerful algorithm for vibration analysis of rotor system. It is shown that the accuracy improves significantly when the transfer matrix for each segment is obtained from finite dynamic element techniques.

  • PDF

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF