• Title/Summary/Keyword: Fine aggregate

Search Result 957, Processing Time 0.023 seconds

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

A Study on the Quality Improvement of Recycled Fine Aggregates with Production Methods (생산 방식별 재생 잔골재의 품질에 대한 기초적 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Yu, Myoung-Youl;Lee, Mun-Hwan;Song, Tae-Hyeob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.368-371
    • /
    • 2004
  • It analyzes the quality of the fine aggregate which is reproduced through a dry production process with cyclone and a wet production process. The conclusions of the study are as follows. 1. The recycled fine aggregate through the dry production process with cyclone shows the low rate of absorption and impurity content after the cyclone process. It shows that its density is 2.37, absorption rate is 4.8 and stability is $5.1\%$ and less. Therefore, it satisfies the standards of KS F 2573(recycled aggregate for concrete) as the first grade. 2. The recycled fine aggregate through the wet production process shows the low rate of absorption and foreign substance content after the process of wash and dehydration. It shows that its density is 2.40, absorption rate is 3.12 and stability is $3.2\%$ and less. Therefore, it satisfies the standards of KS F 2573(recycled aggregate for concrete) as the first grade.

  • PDF

Evaluation of the Flowability of the Heavyweight Concrete using Magnetite Powder and Copper Slag as Fine Aggregate (자철석 분말 및 동슬래그를 잔골재로 활용한 중량 콘크리트의 유동성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.195-196
    • /
    • 2018
  • The Research is underway to utilize heavyweight concrete for various applications. One of them is to use heavy concrete as a marine concrete such as a breakwater to resist wave. Marine concrete is often complex in shape and requires high fluidity. When the heavyweight concrete is high fluidity, there is a high risk of segregation due to the high density of the coarse aggregate. Therefore, we evaluate the fluidity of heavyweight concrete using heavy fine aggregate. As a result of the fluidity evaluation of the heavyweight concrete, the fluidity of the heavy fine aggregate was similar to that of ordinary concrete. Therefore, it is considered that the use of heavy fine aggregate in the development of high fluidity heavyweight concrete will be one of the methods.

  • PDF

An Experimental Study on the Engineering Properties and Durability of Concrete Using High Quality Recycled Fine Aggregate (고품질 순환모래를 사용한 콘크리트의 공학적 특성 및 내구성능에 관한 실험적 연구)

  • Moon Hyung-Jae;Lee Dong-Heck;Kim Young-Sun;Na Chul-Sung;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.145-148
    • /
    • 2005
  • Recently, because of the increase of management system about waste concrete and the policy of recycling promotion of government, the use of recycled aggregate is rapidly increasing nowadays. But, due to the poverty of quality and the lack of KS standard, the use of recycled fine aggregate is not active. Therefore, it was intended to compare and investigate effects which types of sand and replacement ratio of recycled fine aggregate. As the result of this study, in the case of the recycled replacement ratio of 25$\%$, fresh and engineering properties were higher than those of natural fing aggregates with the exception of durability. Also, because quality according to types of fine aggregate shows the difference between various properties, it was considered that the profound study for this result would be necessary.

  • PDF

Effect of Fine Content of the Fine Aggregate is on the Quality of the Cement Mortar (잔골재의 미립분 함유량이 시멘트 모르타르의 품질에 미치는 영향)

  • Kim, Min-Sang;Park, Yong-Jun;Jo, Man-Ki;Kim, Young-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.121-122
    • /
    • 2016
  • Recently in the domestic construction industry, source depletion has resulted in instances of ready-mixed concrete companies using river sand or crushed sand with high fine particle content. But the use of such low-quality fine aggregate is known to cause concrete quality to decline and have negative effects. So this study analyzed how much of an impact changes in fine particle content have on cement mortar's engineering characteristics. As a result, the flow rate and air quantity, which are characteristics of unhardened mortar, were shown to decrease as fine particle content increased, and compression strength, a characteristic of light mortar, was shown to subtly increase as fine particle content decreased.

  • PDF

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Contribution of Two-Stage Mixing Approach on Compressive Strength of Mortar Made of Recycled Fine Aggregate (2단계 배합방법이 순환잔골재 혼입 모르타르의 압축강도에 미치는 영향)

  • Kim, Yu-Jin;Kim, Gyu-Won;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.490-497
    • /
    • 2020
  • This work has been initiated to find possibility whether recycled fine aggregate can be used as a source of aggregate for structural concrete or not. Two-stage mixing approach was chosen in order to maximize strength potential from recycled fine aggregate. Moisture content of the recycled fine aggregate was changed, and two different types of two-stage mixing approaches were applied to produce cement mortar. The strength of mortar made of 100% recycled fine aggregate by two-stage mixing approaches was compared to that of mortar made of 100% washed sea sand. According to the results, the effect of moisture content on compressive strength was observed from low water cement mortar(W/C 0.3). In case of W/C 0.5 cement mortar, no clear relationship was observed between moisture content and strength development. It was found that two-stage mixing approach has a potential to increase the strength of mortar made of 100% recycled fine aggregate. In case of modified version of two-stage mixing approach which first prepares cement paste and pours recycled fine aggregate into the cement paste, was more effective to increase the strength of mortar made of 100% recycled fine aggregate.

A Fundamental Study on Manufacturing Condition the High Quality Recycled Fine Aggregate by Low Speed Wet Rotary Mill (저속습식마쇄기를 이용한 고품질 순환잔골재 제조에 관한 기초적 연구)

  • Kim, Ha-Seog;Lee, Gyung-Hyun;Ra, Jeong-Min;Park, Hyo-Jin;Lim, Dae-Bin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.65-68
    • /
    • 2009
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because the technic to remove old mortar from aggregate is low level. To use the recycled aggregate as high quality grade, it is important to develop the technic to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should remove efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume when, adequate condition of sulfuric mole ratio and aggregate ratio are make.

  • PDF

Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material. (폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

Physical Properties of Polymer-Modified Mortars Using Waste Concrete Fine Aggregate (재생잔골재를 사용한 폴리머 시멘트 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.793-797
    • /
    • 2005
  • This study was undertaken to examine the feasibility of recycling waste concrete fine aggregate to prepare polymer-modified mortars. The specimens of polymer-modified mortars were prepared by using styrene-butadiene rubber(SBR) latex and polyacrylic ester(PAE) emulsion as a polymer modifier. The formulations for specimens were prepared with various replacing ratios of waste concrete fine aggregates as parts of standard sand and various polymer cement ratios. For the evaluation of the performance of polymer-modified mortars, various physical properties were investigated. As a results, water cement ratio of polymer-modified fresh mortars increased with an increase of recycled fine aggregate, but decreased with an increase of polymer modifiers. The compressive and flexural strengths of polymer-modified mortars decreased with an increase of recycled fine aggregate, but flexural strengths increased with an increase of polymer modifiers.

  • PDF