• Title/Summary/Keyword: Filtered back projection (FBP)

Search Result 34, Processing Time 0.027 seconds

Usefulness of Deep Learning Image Reconstruction in Pediatric Chest CT (소아 흉부 CT 검사 시 딥러닝 영상 재구성의 유용성)

  • Do-Hun Kim;Hyo-Yeong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.297-303
    • /
    • 2023
  • Pediatric Computed Tomography (CT) examinations can often result in exam failures or the need for frequent retests due to the difficulty of cooperation from young patients. Deep Learning Image Reconstruction (DLIR) methods offer the potential to obtain diagnostically valuable images while reducing the retest rate in CT examinations of pediatric patients with high radiation sensitivity. In this study, we investigated the possibility of applying DLIR to reduce artifacts caused by respiration or motion and obtain clinically useful images in pediatric chest CT examinations. Retrospective analysis was conducted on chest CT examination data of 43 children under the age of 7 from P Hospital in Gyeongsangnam-do. The images reconstructed using Filtered Back Projection (FBP), Adaptive Statistical Iterative Reconstruction (ASIR-50), and the deep learning algorithm TrueFidelity-Middle (TF-M) were compared. Regions of interest (ROI) were drawn on the right ascending aorta (AA) and back muscle (BM) in contrast-enhanced chest images, and noise (standard deviation, SD) was measured using Hounsfield units (HU) in each image. Statistical analysis was performed using SPSS (ver. 22.0), analyzing the mean values of the three measurements with one-way analysis of variance (ANOVA). The results showed that the SD values for AA were FBP=25.65±3.75, ASIR-50=19.08±3.93, and TF-M=17.05±4.45 (F=66.72, p=0.00), while the SD values for BM were FBP=26.64±3.81, ASIR-50=19.19±3.37, and TF-M=19.87±4.25 (F=49.54, p=0.00). Post-hoc tests revealed significant differences among the three groups. DLIR using TF-M demonstrated significantly lower noise values compared to conventional reconstruction methods. Therefore, the application of the deep learning algorithm TrueFidelity-Middle (TF-M) is expected to be clinically valuable in pediatric chest CT examinations by reducing the degradation of image quality caused by respiration or motion.

Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels (필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성)

  • Hye Ji;Sun Kyoung You;Jeong Eun Lee;So Mi Lee;Hyun-Hae Cho;Joon Young Ohm
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

Quantitative evaluation of iterative reconstruction algorithm for high quality computed tomography image acquisition with low dose radiation : Comparison with filtered back projection algorithm (저선량.고화질 CT 영상 획득을 위한 반복적 재구성 기법의 정량적 평가 : 필터보정 역투영법과의 비교 분석)

  • Ha, Seongmin;Shim, Hackjoon;Chang, Hyuk-Jae;Kim, Seonkyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.274-277
    • /
    • 2013
  • CT(Computed Tomography)영상에서 선량과 화질은 중요한 요소이다. 선량은 환자에게 직접적으로 악영향을 끼치는 요소이며, 화질은 환자의 병변을 판단하는데 매우 중요하게 작용한다. 반복적 재구성 알고리즘을 이용하면 저선량 영상에서도 고화질의 영상을 얻을 수 있는지 FBP와 정량적, 정성적으로 비교하였다. 촬영 프로토콜은 관전압 80, 100, 120kVp에서 관전류를 동일하게 200mA로 촬영하여 획득하였으며, 정량적 평가를 위해 SD(Standard Deviation), SNR(Signal to Noise Ratio), MTF(Modulation Transfer Function)를 측정하여 분석하였다. 선량은 80kVp일 때 가장 낮았으며, 120kVp일 때 가장 높았다. 80kVp의 영상을 Toshiba 사(社)의 AIDR 3D(Adaptive Iterative Reduction integrated into $^{SURE}Exposure$)로 재구성하고, 120kVp의 영상에 FBP로 재구성한 다음 정량적 비교를 한 결과 AIDR 3D를 적용한 영상의 SD가 낮게 나왔으며, SNR이 높게 나타났고, MTF 곡선은 유사하게 나타났다. 그리고 FWHM(Full Width at Half Maximum) 값의 오차가 거의 없었다. 결론적으로 AIDR 3D는 저선량에서도 높은 화질을 나타냄을 확인하였다.

  • PDF

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Effects of ADMIRE Algorithms on Fat Measurements Using Computed Tomography (CT) (CT를 이용한 지방측정에 ADMIRE 알고리즘이 미치는 영향)

  • Lee, Chang Wook;Lee, Sang Heon;Im, In Chul;Lee, Hyo Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.465-472
    • /
    • 2019
  • To investigate the effects of iterative reconstruction algorithms on fat measurements using computed tomography (CT), we comparatively and quantitatively analyzed the ratios of visceral, subcutaneous, and visceral-subcutaneous fat areas as well as the variations of HU and noise of visceral and subcutaneous fat using ADMIRE strength and attempted to identify any difference between them. Experimental results showed that no statistically significant difference existed among the visceral, subcutaneous, and visceral-subcutaneous fat area ratios HU of visceral fat area and HU of subcutaneous fat area when applying ADMIRE as compared with existing conventional filtered back projection algorithms. However, as the ADMIRE strength increases, the noise of visceral and subcutaneous fat decreases by up to 12.1% and 19.2%, respectively. In conclusion, iterative reconstruction algorithms have no effect on the visceral, subcutaneous, and visceral-subcutaneous fat area ratios, which are indicators of fat measurement using CT.

Effect of the Number of Projected Images on the Noise Characteristics in Tomosynthesis Imaging

  • Fukui, Ryohei;Matsuura, Ryutaro;Kida, Katsuhiro;Goto, Sachiko
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.50-58
    • /
    • 2021
  • Purpose: In this study, we investigated the relationship between the noise characteristics and the number of projected images in tomosynthesis using a digital phantom. Methods: The digital phantom consisted of a columnar phantom in the center of the image and a spherical phantom with a diameter of 80 pixels. A virtual scan was performed, and 128 projected images (Tomo_w/o) of the phantoms were obtained. The image noise according to the Poisson distribution was added to the projected images (Tomo_×1). Furthermore, another projected image with additional noise was prepared (Tomo_×1/2). For each dataset, we created datasets with 64 (half) and 32 (quarter) projections by removing the even-numbered images twice from the 128 (fully) projected images. Tomosynthesis images were reconstructed by filtered back projection (FBP). The modulation transfer function (MTF) was estimated using the sphere method, and the noise power spectrum (NPS) was estimated using the two-dimensional Fourier transform method. Results: The MTFs did not change between datasets, and the NPSs improved as the number of projected images increased. The noise characteristics of the Tomo_×1_half images were the same as those of the Tomo_×1/2_full. Conclusions: To achieve a reduction in the patient dose in tomosynthesis acquisition, we recommend reducing the number of projected images rather than reducing the dose per projection.

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.