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Purpose: This study automatically discriminates homogeneous and structure edge regions on 
computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio 
(EPR) according to the different types of iterative reconstruction (IR).

Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back 
projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 
10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge 
regions were localized. The noise level was estimated using the averages of the standard 
deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard 
deviations between homogeneous and structural edge regions on subtraction CT between the FBP 
and IR.

Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 
HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise 
reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 
and 1.22±0.51 for iDose4 and IMR, respectively. 

Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining 
the anatomical structure. This study suggested automated evaluation measurements of noise levels 
and EPRs, which are important aspects in CT image quality with patients’ cases of FBP, iDose4, and 
IMR. We expect that the inclusion of other important image quality indices with a greater number 
of patients’ cases will enable the establishment of integrated platforms for monitoring both CT 
image quality and radiation dose.
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Introduction

Over the past several decades, computed tomography 

(CT) imaging techniques have been developed in various 

ways. One of the most important concerns in CT imaging is 

the balance between radiation dose and image quality [1]. 
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The importance of reducing radiation doses while main-

taining image quality has led to technical improvements, 

such as automatic exposure control, iterative reconstruc-

tion (IR), and dual-energy imaging techniques [2-5]. Fur-

thermore, IR techniques are widely used in clinics, and they 

have replaced the conventional filtered back projection 

(FBP) method [6]. IR updates the image estimate through 

iterative numerical calculations until the errors between 

the calculated and measured data are minimized and con-

verge [7]. Compared with the FBP method using an analytic 

approach, it is robust against quantum noise and artifacts. 

Recently, an image reconstruction technique based on 

deep learning has emerged, creating a new paradigm [8,9]. 

Deep learning reconstruction (DLR) is a data-driven ap-

proach that produces images with lower image noise than 

those reconstructed using the IR method [10,11]. In addi-

tion, it performs the task in a shorter time with respect to 

the image processing speed. Currently, many state-of-the-

art reconstruction algorithms are based on deep learning, 

and they support radiological image-reading tasks.

Although IR and DLR can effectively reduce image noise, 

over-smoothing of small-scale structures, and alteration of 

image textures are inevitable. Although the amount of IR-

aided noise reduction is visually clear, their quantification 

is necessary because human observers often fail to discern 

subtle differences [3]. Furthermore, intra- and interobserver 

variabilities affect image quality evaluation, specifically for 

those with large differences in experience. Although evalu-

ations of noise reductions are an efficient way to demon-

strate the improvements of image quality from IR, they also 

depend on raters and circumstances, as it is necessary to 

manually place regions of interest (ROI) in homogeneous 

areas. Subtraction CT (SCT) between reference (usually 

FBP) and IR images may provide insights for the quantifica-

tion of residual structures [12,13]. When IR operates well, 

which reduces noise levels while preserving the anatomical 

structures, subtraction domains present noise-only images 

[8,9]. Contrarily, there are substantial residual components 

in the subtraction domain if the IR poorly works. We re-

ported that the use of low-level thresholds of the structure 

coherence features (SCFs) could effectively localize homo-

geneous areas [14]. Moreover, the use of a higher SCF en-

ables the identification of structural transition regions. This 

study demonstrates the quantification of SCT-based image 

quality using commercially available statistical and model-

based IR.

Materials and Methods

1. Dataset

The abdominopelvic CT images of 10 patients with post 

contrast phases were retrospectively selected after obtain-

ing Institutional Review Board of the Seoul National Univer-

sity Hospital approval (IRB No. 1905−077−1033). Informed 

consent was not required in this study because only image 

data were used and they presented minimal risk of harm 

to subjects. The CT datasets were acquired using a multi-

detector CT scanner (iCT, Philips Healthcare, Cleveland, 

OH, USA), and they were reconstructed with conventional 

FBP, statistical IR (iDose4, Philips Healthcare), and itera-

tive model-based reconstruction (IMR, Philips Healthcare). 

The scanning parameters were tube voltage of 100 kVp and 

slice thickness of 3 mm; automatic exposure control option 

was applied, showing a tube current time product (mAs) of 

131.64±1.86.

2. Reference tissue segmentation

The hepatic parenchyma tissue was used as the reference 

tissue for the quantification of image quality [15]. Gaussian 

filtering with a sigma value of 2.5 was performed to mitigate 

the noise effect on the reference tissue segmentation. Us-

ing the geometrical and intensity information of the liver 

parenchyma, the initial seed was located at the upper-

right end of the image. If the initial seed was lower than 0 

Hounsfield unit (HU), two pixel steps moved it until the 

corresponding pixel values were greater than 0 HU. With 

this seed point, the reference tissue was acquired via three-

dimensional region growing, hole-filling, and morphologi-

cal operation (Fig. 1b).

3. �Structure coherence feature and extraction of 

homogeneous and edge transition region

Previously, we proposed a SCF, which consists of an edgi-
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ness feature to represent the likelihood of a pixel being 

located on an anatomical structure and the randomness 

of the pixel orientation to represent the absence of an ana-

tomical structure [14]. The SCF was defined as follows:
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where IE, HG, and HT denote the edginess of each pixel as 

well as the directional entropy for the gradient vector and 

structure tensor, respectively [14]. The circular ROIs with 

an area of less than 1 cm2 were used [16]. The structural 

edges between two different tissues were extracted by ap-

plying a high SCF threshold. We empirically found that the 

85th percentile of the SCF was appropriate for localizing 

the structure transition region, and we named it RS. Regions 

with SCF less than the 10th percentile belonged to the ho-

mogeneous area, and they were named as RH.

4. �Noise level estimation and preservation of an 

organ structure

For RH, the standard deviations of five randomly selected 

ROIs were averaged to calculate the representative noise 

levels. The placement of the five homogeneous ROIs was 

visually evaluated. In the subtraction domain between the 

reference (FBP) and IR images, the standard deviation val-

ues of the ROIs with pure noise were lower compared with 

those containing structural edges. Therefore, we defined 

the edge preservation ratio (EPR) as follows:
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where σ denotes the standard deviation, the subscript 

denotes the regions being evaluated, and ΔI indicates the 

subtraction domain. Hence, the EPR value will be approxi-

mately one when the advanced reconstruction algorithm 

reduces the noise without degrading the structural compo-

nents. Contrarily, the EPR decreases if substantial residual 

a b c d

Fig. 1. Procedures to extract structural transition region in enhanced hepatic region. (a) Original image, (b) candidate evaluation mask, (c) 
SCF map, and (d) edge regions extracted using SCF threshold greater than the 85th percentile. SCF, structure coherence feature.

Fig. 2. Sample results of ROI placement on homogeneous area on the liver parenchyma. ROI, regions of interest.
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a

b

Fig. 4. Sample localization results of homogeneous (red) and structure transition (blue) regions displayed on (a) FBP image and (b) SCT 
domain. FBP, filtered back projection; SCT, subtraction computed tography.

Fig. 3. Sample images reconstructed with (a) FBP, (b) iDose4, and (c) IMR. SCT between (d) FBP and iDose4 as well as (e) FBP and IMR. FBP, 
filtered back projection; IMR, iterative model-based reconstruction; SCT, subtraction computed tography.

a b c

d e
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structures exist in the subtraction image domain.

Results

1. Noise level

All ROIs were successfully located in homogeneous re-

gions, and the sample ROI placements are presented in Fig. 

2. The noise levels were 20.86±1.77 HU, 13.50±1.14 HU, and 

7.70±0.46 HU for FBP, iDose4, and IMR, respectively. The 

noise levels were reduced by approximately 35.17% and 

62.97% using iDose4 and IMR, respectively.

2. Edge preservation ratio

In the SCT domain for both iDose4 and IMR, the residual 

structures and streak appearances are shown, and their 

amounts are difficult to quantify with the human eye (Fig. 

3). Automated extraction of homogeneous and structure 

transition regions are presented in Fig. 4. The EPR showed 

values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, re-

spectively.

Discussion

In this study, we quantified the amount of structural 

preservation induced by IR using SCT between FBP and 

IRs, which consist of both statistical and model-based ap-

proaches. The EPR values for iDose4 and IMR demonstrated 

reliable quantification with visual assessments on SCT.

SCT is widely used in clinics for various applications. Sub-

traction across adjacent images is often applied to predict 

the noise levels [17]. Although the two subsequent CT im-

ages are correlated, the average discrepancy in noise mea-

surements between the single-image dataset and subtrac-

tion domains showed errors of less than 1% on average [17]. 

In phantom or cadaver images, it is more suitable to scan 

objects repeatedly. Multiple scans and their subtractions 

have been demonstrated to provide reliable noise estimates 

[17,18]. In the SCT application across different scans, On-

oue et al. [19] reported that temporal SCT with nonrigid im-

age registration improves the detection of metastases by six 

board-certified radiologists. Metal artifact reduction (MAR) 

algorithms extract the sinograms of high-density metal 

from those of the original and priors; then, they restore 

them with post processing via an edge-preserving filter and 

a recovery of the adjacent anatomical structures [13,20]. 

Although there are no standard evaluation techniques, 

visual scoring, spicularity at the lines crossing the metal 

region, mean or standard deviation of HU near metals, the 

percent integrity uniformity, or coefficients of fast Fourier 

transform on the ROIs in close vicinity of the materials are 

widely employed [21,22]. SCTs between the original and 

MAR-corrected images can provide an indication of visible 

object edges and other structural information aside from 

the artifacts [23]. Based on the type of SCT, this evaluation 

strategy is applicable to either phantom only or both phan-

tom and clinical images because multiple scans on patient’s 

increases radiation-induced complications. Evidently, SCT 

can be effectively used for image quality evaluation.

This study has several limitations. First, the number of 

patients was relatively small, and the images obtained us-

ing a single CT scanner were used. Currently, there are 

many reconstruction techniques, including IR and DLR. 

According to the types and manufacturers of IRs and DLRs, 

the amount of noise reduction and texture appearances are 

completely different. We plan to evaluate multiple types 

of IRs and DLRs with a greater number of patients. Sec-

ond, other types of image quality metrics were not evalu-

ated. Many parameters affect the diagnostic performance. 

Specifically, noise is a primary factor in terms of both the 

noise level and the noise power spectrum [24]. The non-

linear properties of IR and nonexplainable problems of 

DLR should be evaluated using appropriate evaluation 

approaches [25-28]. The limitations on the application of 

noise power spectrum measurements with patient images 

can be replaced using an estimation of the noise grain size 

[29]. The use of other image quality metrics along with ra-

diation dose assessment could provide a more reliable and 

integrated image quality evaluation.

Currently, the concept of diagnostic reference level in 

CT is changing to that of noise and dose reference levels. 

Therefore, emphasis on not only the radiation dose but also 

the image quality will become more prevalent. We expect 

our study to be an initial attempt toward the integration 

of the assessment of CT image quality and radiation dose, 
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which would make it possible to lead a patient-friendly so-

ciety.

Conclusions

This study employs SCT to localize homogeneous and 

structural edge regions and visually assess their place-

ments. Furthermore, the noise level and residual structure 

according to iDose4 and IMR were evaluated in a fully au-

tomated manner. This automated measurement technique 

can contribute to the development of a nationwide CT im-

age quality management program.
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