• 제목/요약/키워드: Film Condensation

검색결과 163건 처리시간 0.028초

불응축가스가 평판위 응축열전달에 미치는 영향에 관한 연구 (A study on effect of heat transfer of condensation including noncondensable gas over a flat plate)

  • 양대일;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.25-30
    • /
    • 2000
  • In present paper, mass transfer over a flat plate with film condensation including noncondesable gas is analyzed with the help of similarity methods. Couette flow was assumed in liquid film and boundary-layer approximation was used in the ambient flow. Governing equations were transformed into the ordinary differential equtions by the similarity methods. Runge-Kutta and shooting method were used in order to fine the effect of mass transfer on the velocity and concentrations at the liquid-vapor interface.

  • PDF

금속 산화물 박막 제작을 위한 산화 시스템의 평가 (Evaluation of Oxidation System for Metal Oxide Thin Film)

  • 임중관;유선종;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.25-28
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Ozone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

산화 박막 성장을 위한 $O_3$ 농축 시스템의 구축 및 평가 (Construction and Evaluation of $O_3$ Condensation System for Oxide Thin Film)

  • 임중관;유선종;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1192-1195
    • /
    • 2003
  • A highly condensed ozone gas be transferred to the superconductor thin film growth chamber because ozone is strong oxidizing gas. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Ozone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure.

  • PDF

액적이탈을 고려한 관내 응축열전달계수 계산 모델 (A modeling of in-tube condensation heat transfer considering liquid entrainment)

  • 권정태;안예찬;김무환
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.946-955
    • /
    • 1998
  • Local condensation heat transfer coefficients in tubes were calculated by solving momentum and energy equations for annular film with liquid entrainment. The turbulent eddy distribution across the liquid film has been proposed and the calculated heat transfer coefficients were presented. Also turbulent Prandtl number effects on condensation heat transfer were discussed from three Pr$\_$t/ models. Finally, the calculated condensation heat transfer coefficients of R22 were compared with some correlations frequency referred to in open literature. This calculation model considering liquid entrainment predicted well the in-tube condensation heat transfer coefficient of R22 than the model not considering liquid entrainment. The effect of entrainment on heat transfer was predominant for high quality and high mass flux when the liquid film was turbulent.

수평평판에서 복합 층류 막응축에 대한 연구 (A Study of Conjugate Laminar Film Condensation on a Flat Plate)

  • 이억수
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.303-311
    • /
    • 2005
  • The problem of conjugate laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A simple and efficient numerical method is proposed for its solution. The interfacial temperature is obtained as a root of 3rd order polynomial for laminar film condensation, and it is presented as a function of the conjugate parameter. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Jacob number, $Ja^{\ast}$, defined by an overall temperature difference, a property ratio R and the conjugate parameter ${\zeta}$. The approximate solutions thus obtained reveal the effects of the conjugate parameter.

초전도 박막 제작을 위한 산화 시스템 구축 및 평가 (Construction and Evaluation of Oxidation System for Superconductor Thin Film)

  • 임중관;박용필;송경용
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.163-167
    • /
    • 2003
  • Ozone is strong and useful oxidizing gas for the fabrication of oxidation thin films. In order to obtain high quality thin film, the ozone concentration must be increased. An ozone condensation system is evaluated in the viewpoint of an ozone supplier for oxidation thin film growth. Ozone is condensed by the adsorption method and ozone concentration reaches 8.5 mol% by 2.5 h after the beginning of the ozone condensation is negligible if the condensed ozone is transferred between the ozone condensation system and the film growth chamber within a few minutes. CuO peak which is the result of the obtained Cu-films using condensed ozone appears by XRD patterns.

Study of Pallet Scale Modified Atmosphere Packaging Films for Reducing Water Condensation

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung- Soo;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.98-107
    • /
    • 2016
  • Purpose: The aim of this study was to find an appropriate polymer film, which could reduce the water condensation for pallet-size modified atmosphere packaging (MAP). Methods: Five different types of films were selected from several commercialized films. Prior to the real food storage test, plastic boxes with wetted plastic balls were used to simulate the high humidity conditions of real food storage. The initial MAP condition was 5% oxygen and 95% nitrogen, and the $O_2$ concentration, the relative humidity and water condensation inside the films were checked on a daily basis. The MAP test for tomatoes was conducted by using the most appropriate film from the five films examined in this study. Results: Every film except Mosspack(R) indicated a similar variation in the $O_2$ concentration over the course of time. The relative humidity near the surfaces of all the films except nylon-6 approached saturation conditions over time. For three kinds of films, namely, low-density polyethylene (LDPE) film, anti-fogging oriented polypropylene (AFOPP) film, and Mosspack(R), the inner surfaces of the films were fully covered with dew after a storage period of a day. Conversely, an area of 4.5% was covered with dew in the case of the poly lactic acid (PLA) film, and there was no dew inside the nylon-6 film. The pallet-size MAP test for tomatoes was conducted by using the nylon-6 film and there was no water condensation inside the nylon-6 film over three weeks of storage. Conclusions: During the pallet scale MAP, water condensation could cause severe fungal infection and wetting of the corrugated box. Hence, it was important to minimize water condensation. This study showed that the MAP films with high WVTR such as nylon-6 and PLA could reduce the water condensation inside the pallet scale MAP.

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포 (Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation)

  • 강희찬;김무환
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.