• Title/Summary/Keyword: Fick's law

Search Result 94, Processing Time 0.031 seconds

A Study on the Service Life Prediction of Reinforced Concrete Structures with Chloride Penetration (철근콘크리트 구조물의 염해에 의한 사용수명 예측에 관한 연구)

  • Kim Dong-Baek;Kwon Ki-Jun;Park Byung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.113-118
    • /
    • 2005
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. The purpose of the present study is to explore the influences of chloride attack parameters to service life of reinforced concrete structures and to propose the rational program for the guarantee of service life. for this purpose, several codes for durability design have been examined and the diffusion analysis based on Fick's second law has been performed with various parameter value. The present study indicates that durability design code of Japan Society of Civil Engineers is more rational than other codes but the application of durability design code of JSCE to domestic durability design needs more studies to the various parameter values related with chloride penetration.

Prediction of Deterioration Process for Concrete Considering Combined Deterioration of Carbonation and Chlorides Ion (중성화와 염해를 고려한 콘크리트의 복합열화 예측)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.902-912
    • /
    • 2003
  • The most common deteriorating processes of concrete structures are carbonation and chloride ion ingress. Many concrete structures have been suffered from chloride ions diffusion or carbonation induced reinforcement corrosion damage and many studies have been done on it. However, those studies were confined mostly to the single deterioration of carbonation or chloride attack only, although actual environment is rather of combined conditions. In case of many in-situ concrete structures, deterioration happened more for the case of combined attack than the single case of carbonation or chloride attack. In this paper, chloride profiles of carbonated concrete is predicted by considering two layer composite model, which is based on Fick's 2nd law. From the experimental result on combined deterioration of chloride and carbonation, it was examined that high chloride concentration was built up to 3∼5 mm over depth from carbonation depth. The analytical modeling of chloride diffusion was suggested to depict the relative influence of the carbonation depth. The diffusion coefficients of carbonation concrete and uncarbonated concrete with elapsed time were considered in this modeling.

Analytical Deterioration Modelling for Recarbontion of Repaired Concrete (보수된 콘크리트의 재탄산화 열화에 대한 분석적 모델)

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.217-218
    • /
    • 2010
  • This study presented the analytical evaluation model effective in the concrete structure repaired with a patching material. The model considered the effect of the repair material on carbon dioxide penetration into the repaired concrete as evaluating the remaining service life of the CO2-deteriorated concrete structure after repair. The diffusion profiles of carbon dioxide as well as the carbonated concrete were effectively able to be modelled with analytical method based on Fick's 1st diffusion law.

  • PDF

Service Life Evaluation through Probabilistic Method Considering Time-Dependent Chloride Behavior (염해 시간의존성을 고려한 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The service life in RC (Reinforced Concrete) is very important and it is usually obtained through deterministic method based on Fick's 2nd law and probabilistic method. This paper presents an evaluation of $P_{df}$(durability failure probability) and the related service life considering time-dependent behaviors in chloride diffusion and surface chloride content. For the work, field investigation is performed for RC structures exposed to chloride attack for 3.5~4.5years, focusing tidal zone (6.0 m) and sea shore (9.0 m), respectively. Random variables like cover depth, chloride diffusion coefficient, and surface chloride content are obtained, and $P_{df}$ and the service life are evaluated. Unlike the results from deterministic method using LIFE 365, probabilistic method with time effects on diffusion and surface chloride shows a relatively rapid change in the result, which is a significant reductions of service life in the case with low surface chloride content. For probabilistic evaluation of durability, high surface chloride content over $10.0kg/m^3$ is required and reasonable service life can be derived with consideration of time-dependent diffusion coefficient.

A Numerical Model for Cohesive Suspended Load Movement (점착성 부유사 이동에 관한 수치모형)

  • 안수한;이상화
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.119-127
    • /
    • 1990
  • The concentration of cohesive suspended sediment is determined by the circulation of water and the material dispersion. The equations of the two-dimensional, depth-integrated dispersive transport are the Reynolds equation, continuity equation, and advection-dispersion equation based on the Fick's law. A finite difference method has been applied to two models of circulation and dispersion transport. The circulation model is solved by the explicit scheme and the dispersion transport model is solved by multi-operational scheme. It is investigated wheter advective terms are included when the equation of circulation is applied to the model. For advection-dispersion equation, it was also investigated about variations of suspended sediment concentration with respect to the critical shear stresses.

  • PDF

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

Prediction Models for Corrosion of Reinforcing Bars (철근의 부식 예측 모델에 관한 연구)

  • 김도겸;이종석;고경택;이장화;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.739-742
    • /
    • 1999
  • A reinforcement corrosion prediction model was proposed using the results from accelerated testing and mathematical equation from the Fick's 2nd law for chloride-induced corrosion of reinforcement in concrete. The input data included the chloride concentration, mix characteristics of concrete, and environmental conditions. This model can be used to predict the chloride concentration pertaining to corrosion time and loading age for marine concrete structures. This model can also be used to predict the service life.

  • PDF

Predicting on Service Life of Concrete by Steel Corrosion (철근부식에 의한 육지 콘크리트의 수명예측)

  • 정우용;손영무;윤영수;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.682-687
    • /
    • 2000
  • In this research the remaining service life of the concrete due to the steel corrosion was predicted by three cases; causing carbonation, using sea sand, using deicing salts. In case of deterioration by carbonation, effective carbonation depth, effective coverage depth and relative humidity are considered for predicting method. In case of using sea sand, predicting method is made of rust growth equation from polarization resistance method. In case of using deicing salts, predicting method is made of transformation of Fick's law. Three methods are very useful in predicting service life of concrete.

  • PDF

The Concentration of Magnolia Aroma Model Solution Using Pervaporation and Preparation of PVDF/PDMS Composite Membranes (투과증발법을 이용한 Magnolia Aroma 모델액의 농축 및 PVDF/PDMS 복합막의 제조)

  • Lee, Yong-Taek;Park, Joong-Won;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2007
  • This is the research about the concentration of trace Magnolia flavor components in water by pervaporation. We have investigated the change of selectivity depending on support membrane structure and active layer thickness using prepared PVDF/PDMS composite membrane. Through the pure water flux test for PVDF support membrane, we could indirectly confirm that as the coagulation temperature decreases and the polymer concentration increases, the surface porosity and pore diameter decreases. Appling these results to transport mechanism, we could explain the effect of support membrane structure for the composite membrane. The selectivity increases as the thickness of PDMS active layer increases. We could know that there is a limitation to describe the transport on the active layer by Fick's law through these results.

Application of Laser Beam Deflection Technique to Analysis of Stresses Generated during Hydrogen Diffusion through Pd Foil Electrode

  • Han Jeong-Nam;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.70-76
    • /
    • 2001
  • The present work describes the capabilities of laser beam deflection (LBD) technique for the analysis of the stresses developed during hydrogen diffusion through Pd foil electrode. First, we explain briefly the elasto-diffusive (Gorsky effect) and diffusion-elastic phenomena. A model for the diffusion-elastic phenomenon is theoretically derived from the solution of the Fick's equation for given initial and boundary conditions, Vegard's second law and Hooke's law. Second, we introduce how to apply the principle of LBD technique to the study on the stresses generated during hydrogen diffusion. From the comparison of the deflection transients numerically calculated with those experimentally measured, we finally discuss the change in the tensile deflection with time in terms of hydrogen concentration profile transient and hydrogen diffusivity.