The Concentration of Magnolia Aroma Model Solution Using Pervaporation and Preparation of PVDF/PDMS Composite Membranes

투과증발법을 이용한 Magnolia Aroma 모델액의 농축 및 PVDF/PDMS 복합막의 제조

  • Lee, Yong-Taek (College of Environment and Applied Chemistry, Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Park, Joong-Won (College of Environment and Applied Chemistry, Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Shin, Dong-Ho (College of Environment and Applied Chemistry, Chemical Engineering & Advanced Materials Engineering, Kyung Hee University)
  • 이용택 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학) ;
  • 박중원 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학) ;
  • 신동호 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학)
  • Published : 2007.03.30

Abstract

This is the research about the concentration of trace Magnolia flavor components in water by pervaporation. We have investigated the change of selectivity depending on support membrane structure and active layer thickness using prepared PVDF/PDMS composite membrane. Through the pure water flux test for PVDF support membrane, we could indirectly confirm that as the coagulation temperature decreases and the polymer concentration increases, the surface porosity and pore diameter decreases. Appling these results to transport mechanism, we could explain the effect of support membrane structure for the composite membrane. The selectivity increases as the thickness of PDMS active layer increases. We could know that there is a limitation to describe the transport on the active layer by Fick's law through these results.

본 연구는 투과증발법을 이용하여 수용액 중 미량의 목련 향 성분을 농축하는 방법으로, PVDF/PDMS 복합막을 제조하여 지지막의 구조와 활성층의 두께에 따른 분리능의 변화를 살펴보았다. PVDF 지지막은 제막조건인 응고액의 온도가 감소하고 고분자 농도가 증가함에 따라 지지층에서의 표면공극률과 기공의 직경이 감소함을 순수투과실험을 통해서 간접적으로 확인하였고, 복합막에 대한 지지막 구조의 영향을 투과 mechanism식에 적용하여 해석하였다. 또한 PDMS의 두께가 증가됨에 따라 선택도가 증가하는 결과를 통해서, 활성층에서의 물질전달을 Fick's law에 의하여 설명하는데 제한이 있음을 알 수 있었다.

Keywords

References

  1. H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, and M. Tsuhakoa, 'Adsorption of formaldehyde by polyamine-intercalated ${\alpha}$-zirconium phosphate', Solid State Sciences, 4, 1067 (2002) https://doi.org/10.1016/S1293-2558(02)01367-5
  2. http://www.nature.go.kr (2004)
  3. K. H. Bae, 'The medical plants of Korea', Kyohak, Korea (2001)
  4. A. Shepherd, A. C. Habert, and C. P. Borges, 'Hollow fibre modules for orange juice aroma recovery using pervaporation', Desalination, 148, 111 (2002) https://doi.org/10.1016/S0011-9164(02)00662-8
  5. V. S. Cunha, M. L. L. Paredes, C. P. Borges, A. C. Habert, and R. Nobrega, 'Removal of aromatics from multicomponent organic mixtures by pervaporation using polyurethane membranes: experimental and modeling', J. Membr. Sci., 206, 277 (2002) https://doi.org/10.1016/S0376-7388(01)00776-1
  6. N. Rajagopalan and M Cheryan, 'Pervaporation of grape juice aroma', J. Membr. Sci., 104, 243 (1995) https://doi.org/10.1016/0376-7388(95)00039-F
  7. C. C. Pereira, J. R. M. Rufino, A. C. Habert, R. Nobrega, L. M. C. Cabral, and C. P. Borges, 'Aroma compounds recovery of tropical fruit juice by pervaporation: membrane material selection and process evaluation', J. Food. Eng., 66, 77 (2005) https://doi.org/10.1016/j.jfoodeng.2004.02.037
  8. A. Baudot and M. Marin, 'Dairy aroma compounds recovery by pervaporation', J. Membr. Sci., 120, 207 (1996) https://doi.org/10.1016/0376-7388(96)00144-5
  9. B. Smitha, D. Suhanya, S. Sridhar, and M. Ramakrishna, 'Separation of organic-organic mixtures by pervaporation-a review', J. Membr. Sci., 241, 1 (2004) https://doi.org/10.1016/j.memsci.2004.03.042
  10. I. F. J. Vankelecom, B. Moermans, G. Verschueren, and P. A. Jacobs, 'Intrusion of PDMS top layers in porous supports', J. Membr. Sci., 158, 289 (1999) https://doi.org/10.1016/S0376-7388(99)00036-8
  11. O. Trifunovićand G. Tragardh, 'The influence of support layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes', J. Membr. Sci., 259, 122(2005) https://doi.org/10.1016/j.memsci.2005.03.011
  12. F. Lipnizki, J. Olsson, P. Wu, A. Weis, G. Tragardh, and R. W. Field, 'Hydrophobic pervaporation: Influence of the support layer of composite membrane of the mass transfer', Sep. Sci. Technol., 37, 1474 (2002)
  13. J. W. Park, D. H. Shin, and Y. T. Lee, 'Concentration of Citrus essence aroma model solution by pervaporation', Membrane Journal, 16, 68 (2006)
  14. M. Mulder, 'Basic Principles of Membrane Technology', Kluwer Academic Publishers, Dordrecht, Boston, London (1996)
  15. B. K. Chaturvedi, A. K. Ghosh, V. Ramachandhran, M. K. Trivedi, M. S. Hanra, and B. M. Misra, 'Preparation, characterization and performance of polyethersulfone ultrafiltration membranes', Desalination, 133, 31 (2001) https://doi.org/10.1016/S0011-9164(01)00080-7
  16. H. J. Kim, Y. S. Song, and B. R. Min, 'The study on the recovery of volatile organic components by pervaporation', Membrane Journal, 9, 51 (1999)
  17. J. P. Brun, G. Bulvestre, A. Kergreis, and M. Guillou, 'Hydrocarbons separation with polymer membranes: 1. Butadiene-isobutene separation with nitrile rubber membranes', J. Appl. Polym. Sci., 18, 1663 (1974) https://doi.org/10.1002/app.1974.070180608
  18. J. W. F. Spitzen, G. H. Koops, M. H. V. Mulder, and C. A. Smolders, 'The influence of membrane thickness on pervaporation performance', Proceedings of the Third International Conference on Pervaporation Process in Chemical Industry, Bakish Material Corp., Engelwood, NJ, 225 (1988)
  19. G. H. Koops, J. A. M. Nolten, M. H. V. Mulder, and C. A. Smolders, 'Selectivity as a function of membrane thickness: gas separation and pervaporation', J. Appl. Polym. Sci., 53, 1639 (1994) https://doi.org/10.1002/app.1994.070531210