• Title/Summary/Keyword: Fiber content

Search Result 2,419, Processing Time 0.028 seconds

Preparation and Physical Properties of Bio-Composites Using Kenaf Cultivated in Korea (국내 재배 케나프 섬유를 이용한 바이오복합재의 제조와 물리적 특성)

  • Kim, Dae-Sung;Song, Kyung-Hun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1889-1899
    • /
    • 2010
  • This study examines the preparation and characterization of Kenaf/Starch bio-composites used as filler and a matrix. Kenaf was cultivated in Chung-ju in Korea, and the Kenaf/Starch bio-composites were prepared under various conditions of kenaf fiber length (1-5 centimeters); the content of Kenaf fiber was 10%, 20%, 30%, and 40%, and the number of composite layers (one-four). Depending on the formation conditions of Kenaf/Starch composites, the physical properties such as tensile strength, elongation, and the young modulus of the Kenaf/Starch composites were measured. In addition, we measured the SEM cross-section images in order to investigate the interfacial adhesion properties of fractured surfaces. As a result, the tensile strength and elongation of the Kenaf/Starch composites were highest in the molding conditions of a hot press at $120^{\circ}C$, 3000PSI of pressure, and for 30 minute periods. The result of measuring the physical properties of the composites manufactured by varying the content of Kenaf fiber when the content of Kenaf fiber was 30% as well the physical properties of the Kenaf/Starch composite was found desirable. It was found that the physical properties improved with more overlapped layers in the composites manufactured by varying the number of overlapped layers. Through the measuring of the SEM cross-section images, we found that the interfacial adhesion state between the filler and matrix of Kenaf/Starch composite greatly affects the physical properties.

Soybean Curd Residue (Biji) as a Dietary Fiber Source in Cake

  • Kim, Yeoung-Ae
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.160-164
    • /
    • 2000
  • The content of total dietary fiber in biji dried by hot air was 65.40%, and the percent of insoluble fiber and soluble fiber in total dietary fiber was 63.60% and 1.80%, respectively. In testing the feasibility of biji as a fiber source in cake, cakes were prepared with flour substituted with biji powder at the level of 0%, 5%, 10%, 15% and 20%. The Hunter value showed that the crumb colors of the cakes with 10%, 15% and 20% biji powder were significantly different from the control. The specific volume of the cake with 20% biji powder was significantly lower tan the other cakes. Cakes with 5%, 10% and 15% biji powder were les hard than the control after 10 days storage at 2$0^{\circ}C$. Sensory evaluations showed that their characteristics - crumb color, crumb texture, moistness, softness and overall preference - were significantly influenced by the replacement of flour with 10%, 15% and 20% biji powder. However, there was no difference in softness and overall preference of the cake prepared with 5% replacement compared to the control.

  • PDF

Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese (강섬유보강 경량 폴리머 콘크리트의 역학적 거동)

  • Youn, Joon-No;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.

Estimation of the Dietary Fiber Intake by the Korean Population according to Urban and Rural Areas (한국인의 도시/농촌별 식이섬유 섭취량 추정)

  • 이미경
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.848-853
    • /
    • 1997
  • The daily intake of dietary fiber by Korean population in urban and rural areas was computed from an optimized food intake based on national nutrition survey, food balance sheet, and the dietary fiber content of Korean foods. The average intake of dietary fiber the nationwide and in urban and rural areas were 24, 22 and 28g in the 1970's, 20, 21 and 20g in 1980's , and 22, 22 and 21g in the 1990's , respectively. As compared with the recommended dietary allowance of 20-25g for Koreans, the average intake of dietary fiber was within the normal range, regardless of urban and rural areas. Since the dietary pattern of korean people is being changed according to different life style, the exact intakes of dietary fiber by diverse specific population groups should be assessed in the future.

  • PDF

Engineering characteristics of the Fiber Reinforced Floor Finishing Concrete According to the changes of Nylon Fiber Length (나일론 섬유의 길이변화에 따른 섬유보강 바닥마감용 콘크리트의 공학적 특성)

  • Jeon, Kyu-Nam;Baek, Dae-Hyun;Jung, Woo-Tai;Park, Jong-Sup;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.153-156
    • /
    • 2009
  • This study investigated the fundamental properties corresponding to various length changes on NY fiber reinforced concrete. For results of fresh concrete, the slump and air content were declined, but the unit volume weight and vebe time were increased. For the hardened concrete properties, the compressive strength showed increasing tendency according to the NY fiber length. The dry and autogenous shrinkage also decreased compared with Plain. Generally, the caes that 19 mm NY fiber was used was better than any other cases.

  • PDF

Characteristics of Electroconductive Paper Manufactured with Carbon Fiber (탄소섬유를 이용한 전도성 종이의 제조 및 특성)

  • Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • Electroconductive papers were manufactured as handsheet by mixing carbon fiber in LBKP and BCTMP. The electrical conductivity of the paper was improved by increasing carbon fiber content and basis weight. The porosity was increased and tensile strength was decreased by the addition of carbon fiber. Electrical conductivity of carbon fiber and BCTMP-based sheet was much better than those of carbon fiber and LBKP-based one. This result indicated that the electrical conductivity of paper can be affected by the kinds of raw material of wood fibers used.

Effects of Dietary Fiber on the Bacterial Enzymes and Putrefactive Metabolite in Aged Rats (주요 식이섬유질원이 첨가된 식이가 노화 흰쥐의 장내효소 및 유해산물에 미치는 영향)

  • 강어진;이상선;양차범;신현경
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.488-492
    • /
    • 1998
  • This study was performed to investigate the influcence of various dietary fiber sources in Korea for activities of bacterial enzymes (${\beta}$-glucosidase, ${\beta}$-glucuronidase) and amounts of putrefactive product (indole) in aged rats. ${\beta}$-Glucosidase activity in the intestinal content was significantly lower in the seamustard 15% group than in other groups whereas the activity of ${\beta}$-glucuronidase was higher in the mugwort 15% group than other experimental groups. The amount of indole and pH in the intestinal content of aged rats were significantly lower in mugwort groups than in other groups.

  • PDF

Measuring of Fiber Contents in Spalling Resistance Concrete (비폭렬 콘크리트내 섬유혼입량 측정방법)

  • Lee, Ju-Sun;Pei, Chang-Chun;Lee, Seong-Yeun;Han, Chang-Peng;Han, Min-Chel;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.305-306
    • /
    • 2009
  • This study is on basic experimental methods of easily verifying the fiber content in non-spalling concrete at construction sites. As a result, fiber content in a mixture can be effectively measured by using 15$\ell$ of water for dilution of specimens, dry bit trowel for tool, and microwave for drying.

  • PDF

A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites (유리-탄소 하이브리드 복합재료의 파괴인성에 관한 연구)

  • No, Ho-Seop;Go, Seong-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.295-305
    • /
    • 1992
  • The critical strain energy release rate and the failure mechanisms of glass-carbon epoxy resin hybrid composites are investigated in the temperature range of the ambient temperature to 8$0^{\circ}C$. The direction of laminates and the volume fraction are [(+45, -45, 0, 0) sub(2) ] sub(s), 50%, respectively. The major failure mechanisms of these composites are studied using the scanning electron microscope for the fracture surface. Results are summarized as follows: 1) The critical strain energy release rate shows a maximum at ambient temperature and it tends to decrease as temperature goes up. 2) The critical strain energy release rate increases as the content of glass increases, and especially shows dramatic increase for the high glass fiber content specimens. 3) Major failure mechanisms can be classfied such as localized shear yielding, fiber-matrix debonding, matrix micro-cracking, and fiber pull-out and/or delamination.

  • PDF

Experimental study on the Strength and Permeable Properties Soil-Concrete (고화재를 사용한 Soil-Concrete의 강도 및 투수특성(구조 및 재료 \circled2))

  • 서대석;김영익;정현정;남기성;이전성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.278-283
    • /
    • 2000
  • This study is performed to evaluate the strength and permeable properties of soil-concrete. The results show that the highest compressive strength and bending strength of soil-concrete is achieved by 20% gravel, 20% excellent soil compound and 0.1% polypropylene fiber filled soil concrete. The coefficient of permeability is decreased with increase of the content of gravel and excellent soil compound, and increased with increase of the content of polypropylene fiber. Accordingly, soil concrete with polypropylene fiber will be improve the physical and mechanical properties of concrete.

  • PDF