• 제목/요약/키워드: Fiber Aspect Ratio

검색결과 240건 처리시간 0.027초

Electrical Conductivity of Carbon Fiber-Polymer Composite (Carbon 화이버-폴리머 복합체의 전기적 특성)

  • 이재연;최경만
    • Journal of the Korean Ceramic Society
    • /
    • 제35권6호
    • /
    • pp.603-609
    • /
    • 1998
  • The composites of insulating polymer filled with conducting carbon-fiber were fabricated by molding press method. To understand the fiber aspect-ratio dependence of electrical conductivity the aspect ratio was varied from 4 to 10 The percolation thresholds of transition from the insulator to the conductor de-creased as the fiber aspect ratio increased. The percolation threshold of fiber-segregated composite in this study was smaller than that of fiber-random composite shown in other study. When the electrical con-ductivity curves were fitted by general effective medium equation morphological variable(t) decreased as the fiber aspect-ratio increased.

  • PDF

Effects of Fiber Aspect Ratio, Fiber Content, and Bonding Agent on Tensile and Tear Properties of Short-Fiber Reinforced Rubber

  • Lee, Dong-Joo;Ryu, Sang-Ryeoul
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.35-43
    • /
    • 2001
  • Both tensile and tear properties of short-fiber reinforced Chloroprene rubber have been studied as functions of the fiber aspect ratio and fiber content. Both properties increased when both the fiber aspect ratio and fiber content were increased. The fiber reinforced rubbers exhibited maximum values of these properties at a fiber aspect ratio of about 300. When the fiber aspect ratio exceeds 400, the mechanical properties decreased with the fiber content because of the non-uniform dispersion of fibers. The tensile modulus was compared with the prediction by the Halpin-Tsai equations for randomly oriented cases. A bonding agent was used in the fiber treating process. It was found that the ultimate tensile strength, torque, tearing energy and tensile modulus of the rubbers with treated fibers were much higher than those with untreated ones.

  • PDF

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제48권3호
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

A Study on Prediction of Young's Modulus of Composite with Aspect Ratio Distribution of Short Fiber (장단비 분포를 갖는 단섬유 복합재의 영계수 예측에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • 제10권4호
    • /
    • pp.99-104
    • /
    • 2006
  • Young's modulus of composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory, where short fibers of aspect ratio distribution are assumed to be aligned. Young's modulus of the composite is predicted with the smallest class interval for simulating the actual distribution of fiber aspect ratio, which is compared with that computed using different class intervals. Young's modulus of the composite predicted with mean aspect ratio or the largest class interval is overestimated by the maximum 10%. As the class interval of short fibers for predicting Young's modulus decreases, the predicted results show good agreements with those obtained using the actual distribution of fiber aspect ratio. It can be finally concluded from the study that if and only if the class interval of short fiber normalized by the maximum aspect ratio is smaller than 0.1, the predicted results are consistent with those obtained using the actual distribution of aspect ratio.

  • PDF

A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites (불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제6권3호
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

Spalling Properties of High Strength Concrete Made with Various Aspect Ratios and Fiber Contents of Nylon Fiber (나일론 섬유의 형상비 및 혼입률 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Song, Yong-Won;Heo, Young-Sun;Lee, Seong-Yeun;Hann, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.55-58
    • /
    • 2007
  • This study investigates the spatting properties of high strength concrete, $60\sim80MPa$ class, designed with diverse aspect ratios and fiber content of nylon(NY). Test showed that increase of fiber content and aspect ratio in concrete decreased the fluidity of fresh concrete, especially for 1580 and 3000 aspect ratio of fiber. As for the compressive and tensile strength, adding NY fiber did not significantly affect the values In the range of high strength. After completing the fire test, the specimens containing both 750 and 1000 aspect ratios of fiber protected the spatting occurrence even in 0.05vol.% of fiber content. This specimens indicated the residual compressive strength ratio at 37%, showing the most favorable value among other specimens. Therefore, it is demonstrated that to protect the spalling in high strength concrete considering the effective fluidity, strength and economic efficiency altogether, adding 0.05vol.% of NY fiber with 750 aspect ratio Is beneficial.

  • PDF

Effects of Aspect and Area Ratio of Fiber on the Accuracy of Intensity Method in Measurement of Fiber Orientation-Angle Distribution (섬유배향각 분포측정에 있어서 농도법의 정밀도에 미치는 섬유종횡비와 면적비의 영향)

  • Lee, S.D.;Kim, H.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제22권4호
    • /
    • pp.953-959
    • /
    • 1998
  • To investigate accuracy of intensity method for measurement of the fiber orientation distribution, fiber orientation function is calculated by drawing simulation figures for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method are compared with the calculated values of fiber orientation function. The results show that measurement accuracy of the fiber orientation angle distribution by intensity method is affected by the fiber aspect ratio when the total length of oriented fiber is same. The average gradient of fiber orientation function is 0.94 for 1000mm of the total fiber length and is 0.93 for 2000 mm when the fiber aspect ratio is over 50. Measurement accuracy by intensity method is about 94% and the reliable data can be obtained by intensity method.

Tensile Characteristics of High-Ductile Cementless Composite According to Aspect Ratio of Fiber (섬유의 형상비에 따른 고연성 무시멘트 복합재료의 인장특성)

  • Choi, Jeong-Il;Park, Se Eon;Kang, Su-Tae;Oh, Sungwoo;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제6권3호
    • /
    • pp.160-166
    • /
    • 2018
  • The purpose of this study is to investigate experimentally the effects of aspect ratio of polyethylene fiber on the compressive strength and tensile behavior of alkali-activated cementless composite. Two mixtures were determined according to aspect ratio values of polyethylene fibers, and the compressive strength and tension tests were performed. Test results showed that the effect of aspect ratio of fiber on the compressive strength was negligible and the tensile strength, ductility, and number of cracks of the mixture including the fiber with high aspect ratio were higher than those of the mixture including the fiber with low aspect ratio. On the other hand, the crack spacing and crack width were low in the mixture including the fiber with high aspect ratio.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Stress Analysis of a Discontinuous Composite Using Mechanics of Materials Approach (불연속 복합체의 재료역학적 접근을 통한 응력해석)

  • 김홍건;양성모;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제12권4호
    • /
    • pp.63-69
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime then the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a function of several variables, such as the modulus ratio, the fiber volume fraction, the fiber aspect ratio, is proposed. It is found that the modulus ratio($E_f$/$E_m$) is the essential variable among them. Thus, the stress concentration factor is expressed as a function of modulus ratio in the derivation. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.