• Title/Summary/Keyword: Fertilizer-soil incorporation

Search Result 63, Processing Time 0.018 seconds

Growth and Yield of Rice Affected by Slow Release Nitrogen Fertilizer Mixed with Soil in Seedling Box and Incorporated into Paddy Soil (육묘상자와 본답에 전층시비한 완효성 질소비료가 벼의 생육과 수량에 미치는 영향)

  • Lee, Suk-Soon;Lee, Dong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • To find out the optimum level of slow release N fertilizers (MS 10, MS S10, LCU 80, and LCU 100), total amount of nitrogen required throughout the growing season were applied in the seedling box or incorporated into paddy soil. Four levels of the slow release N fertilizers (0, 6, 9 and 12 kg N/10 a) were mixed with commercial rice nursery bed soil. N release rate and electrical conductivity(EC) of the slow release fertilizers were greater in the order of MS 10 > LCU 80 ${\fallingdotseq}$ LCU 100 > MS S10 and higher as temperature increased. No seedlings were emerged in all MS 10 plots. The seedling emergence rate of LCU 80 and LCU 100 decreased as the N level increased and seedlings were wilted severely on the 13th day after sowing at 9 and 12 kg N/10 a. In MS S10 plots the emergence rate was higher than 80% at all N levels and seedling growth was normal until 30 days after sowing. Yield of rice was similar between seedling box application and soil incorporation in paddy of MS S10. Yield of rice among the 6, 9, 12 kg N/10 a of MS S10 and conventional 12 kg N/10 a of urea split application was similar, but it was significantly higher compared with no N plot. Fertilizer N recovery of MS S10 decreased as fertilizer level increased and it was significantly higher compared with conventional urea split application.

  • PDF

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

Effect of Green Manure Hairy vetch on Rice Growth and Saving of Irrigation Water (녹비작물 헤어리베치가 벼 생육 및 관개량 절약에 미치는 효과)

  • Jeon, Weon-Tai;Hur, Seung-Oh;Seong, Ki-Yeong;Oh, In-Seok;Kim, Min-Tae;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Green manure crops are primarily used to reduce the application of chemical fertilizers. In this study, a two-year field experiment was conducted to evaluate the effects of green manure hairy vetch on rice growth and saving of irrigation water. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from 2008 to 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Hairy vetch as a green manure crop was incorporated in soil for rice cultivation. Chemical fertilizers had not been applied to hairy vetch plot. Treatments included once irrigation (OI) per week and conventional irrigation (CI). In 2008, the water use efficiency of OI increased by 46% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 38 days after rice transplanting). In 2009, the water use efficiency of OI increased by 61.3% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 30 days after rice transplanting). Soil physical properties such as bulk density, soil porosity ratio and glomalin contents were improved by the incorporation of hairy vetch. The rice yield of OI water management was not significantly different from those of CI water management by hairy vetch application both years. These results suggest that the OI water management with hairy vetch incorporated in soil for rice cultivation can be used in rice fields to reduce the amount of irrigation water and chemical fertilizer.

Effects of Crotalaria Incorporation into Soil as a Green Manure on Growth of Strawberry and Inorganic Soil Nitrogen Level (크로탈라리아의 토양환원이 토양의 무기태 질소농도 및 딸기의 생육에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Park, Young-Eun;Kim, Ki-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.578-586
    • /
    • 2016
  • In this study, we evaluated the effects of soil incorporation of crotalaria as a green manure on the growth and yields of 'Seolhyang' strawberry and inorganic soil nitrogen levels in a greenhouse. Four different N treatments were used, as follows: zero N fertilizer (control), crotalaria, crotalaria with 50% urea, and 100% urea. The recommended N requirement (100% urea) for strawberry was $86kgN{\cdot}ha^{-1}$ and 50% of the recommended N (50% urea) was $43kgN{\cdot}ha^{-1}$. Crotalaria was sowed on June $17^{th}$, 2011 and cultivated for 37 days. The amount of N supply from soil incorporation of crotalaria was $104kgN{\cdot}ha^{-1}$. Strawberry was planted on September $9^{th}$, 2011 and cultivated for 255 days after planting. The concentrations of soluble solids and acidity of strawberry fruits for the crotalaria treatment were higher than for the crotalaria with 50% urea and 100% urea treatments. On the other hand, the growth and yield of strawberry was the highest for the crotalaria with 50% urea and 100% urea treatments, followed by the crotalaria treatment, and the lowest for the control. Soil inorganic N concentration for the crotalaria treatment was continuously decreased to $24mg{\cdot}kg^{-1}$ at the end of the growing season, while crotalaria with 50% urea and 100% urea treatments maintained an inorganic N concentration that ranged from 35 to $50mg{\cdot}kg^{-1}$. These results indicate that the amount of N supply from soil incorporation of crotalaria may not be enough because strawberry yield was lower than for other N treatments. Therefore, additional nitrogen, such as 50% urea after soil incorporation of crotalaria, is recommended.

Differences of Soil Enzyme Activity after Incorporation with Chinese Milk Vetch Litter Cut at Different Growth Stages

  • Lee, Ji-Hyun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.341-347
    • /
    • 2007
  • Chinese milk vetch (CMV) is a winter legume that is commonly used as cover crop in Korea. Kill date of cover crop for addition into soil affects N content in cover crop and N availability in soil. This study was conducted to evaluate the effect of CMV as green manure cover crop according to kill dates before growing corn without artificial fertilizer. Top of CMV cut three times on 13 April, 27 April, and 11 May were added into soil at a rate of 600 kg per 10a. Sugar content in CMV litter was persistently decreased from mid-April to late-May. The decrease of sugar content might be due to the transformation into starch and/or other storage or structural constituents. The decreased amount of sugars was greater than 12% and the increased amount of starch was less than 0.2%. Concentration of $NH_4^+$ in soil treated by CMV litter cut on May 11 was slightly higher than that in the treatment with early-cut (April 13) CMV, the concentration at 28 and 49 DAT (days after treatment) was higher in the treatment with late-cut CMV litter. Regardless of cut (kill) date of CMV, the phosphatase activity in the treatment of CMV litter was higher compared to the untreated control. Soil dehydrogenase activity was increased steadily by addition of CMV litter implying total microbial activities in the soil were increased. Our results demonstrate that the status of cover crop species at kill date is an important factor influencing soil enzyme activities derived from microorganisms. Therefore, the optimal kill date of cover crop should be examined to improve the efficiency of cover crop as green manure crop regarding the practical sequence in cropping system.

Effects of Green Manure Crops, Hairy vetch and Rye, on N Supply, Redpepper Growth and Yields (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Sung, Jwa-Kyung;Lee, Sang-Min;Jung, Jung-Ah;Kim, Jong-Mun;Lee, Yong-Hwan;Choi, Du-Hoi;Kim, Tae Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.247-253
    • /
    • 2008
  • Winter annual green manure crops may be an effective tool for environmental-friendly agriculture system. The effect of legume (hairy vetch), non-legume (rye) and N fertilization ($190kg\;N\;ha^{-1}$) was examined and compared on red-pepper yield, nitrogen uptake, carbohydrate composition, and soil N and C contents. We monitored soil N and C for 120 days after incorporation (DAI) of green manures or mineral fertilizer. The mineralization of nitrogen reached the maximum around 30 DAI. The amount of inorganic nitrogen supplied by mineralization of hairy vetch residue was greater with than chemical N or rye. Photosynthetic rate was similar by 70 DAT in all treatments however, it in rye-incorporated red-pepper presented a sharp decline at later growth period. Leaf total nitrogen was greater with hairy vetch and chemical N than rye throughout the experiment. The soluble sugar increased steadily in all treatments from 40 to 110 days after transplanting (DAT) whereas starch showed a tendency of great decrease. Hairy vetch greatly promoted red-pepper growth by the later period however, chemical N showed the highest fruit yields.

Effect of Incorporation Times of Green Barley and Hairy Vetch on Rice Yield in Paddy Soil with Liquid Pig Manure (돈분액비를 시용한 녹비보리 및 헤어리베치의 혼입시기가 벼 수량에 미치는 영향)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Ryu, Jin-Hee;Kim, Min-Tae;Kang, Hang-Won;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) and liquid pig manure(LPM) is one of the methods for reduction of chemical fertilizer and the increase of crop yield. The objective of this study was to select optimal incorporation time of GMCs on growth and nutrient property in paddy soil treated LPM. METHODS AND RESULTS: The kinds of GMCs were Hordeum vulgare L.(green barley, GB) and Vicia villosa roth(hairy vetch, HV). The effects of GMCs on rice yield were investigated under different incorporation times of GMCs(LPM1: at 25 days before rice transplantation, LPM2: at 18 days before rice transplantation, LPM3: at 11 days before rice transplantation). In GB treatments, the biomass was greater in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Contents of N, P and K ranged 1.21~1.28, 0.36~0.38 and 1.41~1.45%, respectively, regardless of incorporation times. The amounts of nutrient supply in GB treatments were higher in LPM1 than those in other treatment conditions. In GB treatments, rice yields in LPM1, LPM2 and LPM3 were 523, 525 and 526(increasing yield 3% than control) kg/10a, respectively. In HV treatments, the amounts of nutrient supply were higher in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Rice yields were 530 kg/10a for LPM1, 531 kg/10a for LPM2, 535 (increasing yield 5% than control) kg/10a for LPM3 in HV treatments, respectively. CONCLUSION(s): The optimum incorporation time of green barley and hairy vetch was at 11 days before rice transplantation(LPM3) in paddy soil with liquid pig manure.

Behavior of Synthetic Layered Double Hydroxides in Soils (인공합성된 Layered Double Hydroxides의 토양중 행동)

  • Choi, Choong-Lyeal;Seo, Yong-Jin;Lee, Dong-Hoon;Kim, Jun-Hyeong;Yeou, Sang-Gak;Choi, Jyung;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.412-417
    • /
    • 2007
  • This study was to elucidate the effects of layered double hydroxides(LDHs) application on the chemical properties of the soils along with the fate of the applied LDHs. The effects of LDHs application were compared with those of calcium carbonate widely used for the neutralization of acidic soils. Incorporation of LDHs into the soil resulted in higher pH value and $Mg^{2+}$ content in soil leachate than that of $CaCO_3$ treatment. There was no significant difference in water-soluble P content in both the treatments. However, $Al^{3+}$ and $Si^{4+}$ contents were decreased by LDHs and $CaCO_3$ treatment, even though a large amount of $Al^{3+}$ was released into soil solution with the disintegration of LDHs framework. LDHs structure in soil was gradually disintegrated from the its original layered structure under acidic condition of soil. Therefore, this study suggests that LDHs could be utilized as a carrier of functional substances to enhance the efficiency of various ago-chemicals without any ill effects on the soil environments.

Long-term Impact of Single Rice Cropping System on SOC Dynamics (동일비료장기연용 논에서 토양유기탄소의 변동)

  • Jung, Won-Kyo;Kim, Sun-Kwan;Yeon, Byung-Yul;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.292-297
    • /
    • 2007
  • Global warming and climate changes have been major issues for decades andvarious researches have reported their impact on our environment. According to recent researches, increased carbon dioxide ($CO_2$) concentration in the atmosphere is considered as a dominant contributor to global climate changes and thus numerous researches were conducted to control $CO_2$ concentration in the atmosphere. Soil management practices, such as reducing tillage intensity, returning plant residues, and enhancing cropping system have recommended for restoring organic carbon into the soils effectively. However, few studies on soil carbon sequestration have reported for Korean paddy soils. Therefore, evaluation of soil organic carbon (SOC) dynamics in the long-term single rice cropping system is essential in order to find out potential capacity of paddy field as a carbon sink source. The objective of this research was to evaluate SOC dynamics on the long-term single rice cropping system. Research was conducted in the research farm at National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon. Long-term phosphorus and potassium fertilization and lime application didn't significantly affect on SOC compared to controls. We found that SOC contents were increased continually at the long-term composting plots with enhanced rate of carbon storage. In conclusion, continuous incorporation of plant residues (i.e., composting) is recommended to effectively sequester soil carbon for Korean paddy soils. This result implies that continuous composting in a paddy field may contributenot only for increasing SOC in the soils but also for mitigating global warming through reducing carbon dioxide emission into atmosphere. Therefore, we recommend that a strategy or policy measures to encourage farmers to return plant residues continuously for mitigation of global warming as well as soil fertility is being developed.

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.