• Title/Summary/Keyword: Feed Preservation

Search Result 38, Processing Time 0.025 seconds

Supplementation of Essential Oil Extracted from Citrus Peel to Animal Feeds Decreases Microbial Activity and Aflatoxin Contamination without Disrupting In vitro Ruminal Fermentation

  • Nam, I.S.;Garnsworthy, P.C.;Ahn, Jong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1617-1622
    • /
    • 2006
  • Long-term storage of feeds or feedstuffs in high temperature and humid conditions can be difficult because of microbial contamination. Essential oil isolated from industrial waste citrus peel could be used as a preservative because it is likely to have anti-bacterial and anti-fungal activity. Our objective was to determine whether different levels (0.028, 0.056 and 0.112 g/kg) of citrus essential oil (CEO) would provide anti-microbial activity and enhance preservation of animal feed without influencing rumen fermentation. At 0.112 g/kg, CEO inhibited growth of Escherichia coli (ATCC 25922) and Salmonela enteritidis (IFO 3313). Growth of E. coli recovered after 24 h of incubation, but S. enteritidis continued to be inhibited for 72 h. Preservation of antibiotic-free diets for swine was assessed by observing anti-aflatoxin activity. Aflatoxin was detected in control feed samples on days 16 (8 ppb) and 21 (8 ppb) and in anti-fungal agent (AA) treated samples on days 16 (2 ppb) and 21 (4 ppb). However, aflatoxin was not detected in feed samples treated with CEO. Treatment with CEO and AA did not influence ruminal pH, dry matter digestibility (DMD) or organic matter digestibility (OMD) over 48 h of incubation in rumen fluid. Acetate and propionate were slightly higher with CEO treatment (p<0.05), but total concentration of volatile fatty acid (VFA) was not significantly affected by treatment. Ammonia-N concentration was slightly higher for the control treatment (p<0.05). This study showed that treating feed with CEO enhances preservation of animal feed without influencing in vitro rumen fermentation.

Effects of Freeze-dried Citrus Peel on Feed Preservation, Aflatoxin Contamination and In vitro Ruminal Fermentation

  • Nam, I.S.;Garnsworthy, P.C.;Ahn, Jong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.674-680
    • /
    • 2009
  • The objective of this study was to investigate antimicrobial activity, during the storage period, of animal feed and any effects on in vitro rumen digestion by supplementing different levels (5.55, 11.1, and 22.2 g/kg) of freeze dried citrus peel (FDCP) to the feed compared to untreated feed and feed treated with an antifungal agent (AA) at 0.05 g/kg. In a preservation test, feed supplemented with FDCP showed no deterioration over 21 days. Untreated feed and AA-treated feed, however, showed signs of deterioration after 16 days storage. Yellow colour and red colour, measured by spectro chromameter, decreased in the untreated and AA-treated feeds, but not in feed supplemented with FDCP. Aflatoxin was detected in untreated and AA-treated feeds at 16 days (8 ppb and 2 ppb) and 21 days (8 ppb and 4 ppb), but aflatoxin was not detected in the feed supplemented with FDCP. In a second experiment, fermentation by rumen microorganisms of FDCP (22.2 g/kg) and AA (0.05 g/kg) supplemented feeds was studied in vitro. Feeds were incubated with buffered rumen fluid for 3, 6, 9, 12, 24, and 48 h. Dry matter digestibility (DMD) and organic matter digestibility (OMD) were affected by treatment, but ammonia-N, total, and individual volatile fatty acids (VFA) were not adversely affected by treatment. In conclusion, the results indicated that FDCP might be useful for inhibiting microbial growth of animal feed during storage without disrupting rumen fermentation.

SILAGE FERMENTATION AND SILAGE ADDITIVES - Review -

  • Bolsen, K.K.;Ashbell, G.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.483-493
    • /
    • 1996
  • Advances in silage technology, including precision chop forage harvesters, improved silos, polyethylene sheeting, shear cutting silo unloaders, and the introduction of total mixed rations, have made silage the principal method of forage preservation. A better understanding of the biochemistry and microbiology of the four phases of the ensiling process has also led to the development of numerous silage additives. Although acids and acid salts still are used to ensile low-DM forages in wet climates, bacterial inoculants have become the most widely used silage additives in the past decade. Commercial inoculants can assure a rapid and efficient fermentation phase; however, in the future, these products also must contribute to other areas of silage management, including the inhibition of enterobacteria, clostridia, and yeasts and molds. Nonprotein nitrogen additives have the problems of handling, application, and reduced preservation efficiency, which have limited their wide spread use. Aerobic deterioration in the feedout phase continues to be a serious problem, especially in high-DM silages. The introduction of competitive strains of propionic acid-producing bacteria, which could assure aerobically stable silages, would improve most commercial additives. New technologies are needed that would allow the farmer to assess the chemical and microbial status of the silage crop on a given day and then use the appropriate additive(s).

Effect of Cutting Height on the Feed Value and Drying Rate of Rye (Secale cereale L.) Hay

  • Li, Yu Wei;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • Hay-making is one of the most common forage preservation practices in livestock operations. The objective of hay-making is to minimize nutrient loss by shortening field drying time. Measuring the impacts of cutting height of forage crop is necessary to optimize hay production balancing yield and quality, in order to obtain substantial biomass increase through harvest of regrowth. This experiment was conducted to investigate the impact of cutting height of rye (Secale cereale L.) on drying rate and hay quality. Heading stage rye was harvested at 8cm or 15cm stubble heights. Hay was daily tedded at 09:00 and sampled at 09:00, 13:00 and 17:00 to determine moisture content (MC). After two month of preservation, CP (crude protein), ADF (acid detergent fiber), NDF (neutral detergent fiber), IVDMD (in vitro dry matter disappearance), TDN (total digestible nutrient), RFV (relative feed value), DM (dry matter) loss, visual scores and total fungi count were determined for estimation of hay quality. Cutting height at 15cm could enhance the drying rate and CP content (p<0.05), but also increases DM loss (p<0.05) compared to cutting at 8cm. Cutting heights did not affect ADF, NDF, IVDMD, TDN and RFV value (p>0.05). Visual scores of rye hays cutting at 8cm and 15cm, ranged from 83 to 85. Cutting at 8cm tended to maintain higher core bale temperature and fungal count than cutting at 15cm during preservation, but there was no significant difference.

Effect of Tedding Time and Frequency on the Feed Value and Drying Rate of Rye(Secale cereale L.) Hay

  • Li, Yu Wei;Zhao, Guo Qiang;Liu, Chang;Wei, Sheng Nan;Kim, Hak Jin;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2019
  • Hay-making is one of the most common way for forage preservation in livestock industry. The quality and production of hay could be affected by various factors. This experiment was conducted to investigate the effect of tedding time and frequency on drying rate and feed value of forage rye (Secale cereale L.) hay. Rye was harvested on heading stage using mower conditioner. Hay was tedded at each set hour(09:00, 13:00 and 17:00) and sampled at each set hour to determine dry matter (DM) content. After two months' preservation, CP (crude protein), ADF (acid detergent fiber), NDF (neutral detergent fiber), IVDMD (in vitro dry matter digestibility), TDN (total digestible nutrient), RFV (relative feed value), DM loss, visual scores and total fungi count were determined for estimation of hay quality. Tedding was necessary for both speeding up drying rate and improving forage quality. Tedding at 17:00 showed lower NDF content (p<0.05), and also higher RFV value was found compared with tedding at 9:00 and 13:00 (p<0.05). On the other hand, it was observed that more DM losses would be found when tedding later (p<0.05). Tedding in 1~3 times per day were lower in ADF and NDF content (p<0.05), increased CP, TDN and RFV (p<0.05), got less DM loss (p<0.05), and contained less fungi during conservation compared with no tedding (p<0.05). On the other hand, tedding too frequent caused more DM loss (p<0.05). In conclusion, for shorter drying process and higher quality of forage rye hay, tedding at 13:00~17:00 for 1~2 times per day was recommended in this study.

Effects of Feed Moisture and Barrel Temperature on Physical and Pasting Properties of Cassava Starch Extrudate (수분주입량과 배럴온도에 따른 카사바 전분 압출성형물의 물리적 특성)

  • Serge, Edou Ondo;Gu, Bon-Jae;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.271-278
    • /
    • 2011
  • Considering the importance of cassava as food crops in humid tropics, the effect of feed moisture (20, 25%) and barrel temperature (110, $130^{\circ}C$) on physical properties (piece density, expansion, mechanical properties, color, water solubility index, water absorption index) and pasting properties of extruded cassava starch was investigated. The feed moisture used during extrusion processing had a significant effect on extrudates SME input, specific length and piece density at (p<0.05) while effect on cross-sectional expansion index, apparent elastic modulus and breaking strength in bending shown significantly at p<0.1. Furthermore, the interaction effect of feed moisture and barrel temperature gave a significantly affected the SME input and piece density (p<0.1), specific length (p<0.05) and on redness (p<0.01). The increase in water injection rate led to increase in piece density, apparent elastic modulus, breaking strength in bending, cold peak viscosity, breakdown and final viscosity and decrease in cross-sectional expansion index and specific length. It was found that the extrusion cooking process did not affect the value of color L, color b, water solubility index and water absorption index. Thus, the results of this study can be useful to some extent in developing extruded cassava starch as human and animal feeds.

Characteristics of Ultrafiltration and Spray Drying for Crude Protein Bound Polysaccharides Isolated from Agaricus blasei Murill (아가리쿠스버섯에서 분리한 조단백다당류의 막분리 및 분무건조 특성)

  • 홍주헌;윤광섭;최용희
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This study was conducted to investigate the characteristics of ultrafiltration and spray drying process for crude protein bound polysaccharide(CPBP) isolated from Agaricus blasei Murill. In ultrafiltration process, the permeate flux increased with the increase of operating pressure and temperature. The permeate flux declined continuously while the fouling materials were accumulated on the membrane as the operation time increased. In comparing of raw CPBP and filtered CPBP, the viscosity of CPBP treated UF was decreased and $\Delta$E value of treated samples was increased. Thermal efficiencies of spray drying process were increased by increasing inlet temperature, feed rate and feed concentration.

Effect of aeration for the probiotic feed production from food wastes by Lactobacillus acidophilus and Saccharomyces cerevisiae (Lactobacillus acidophilus와 Saccharomyces cerevisiae를 이용한 남은 음식물의 생균 사료화에 대한 공기주입의 영향)

  • Lee, Kyung-seok;Lee, Ki-Young;Oh, Chang-seok;Lee, Dae-Gyu;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.114-119
    • /
    • 2003
  • The fermentative conversion of food wastes into probiotic feed was investigated by seeding of mixed inoculum of Lactobacillus acidophilus and Saccharomyces cerevisiae. After grinding finely, optimal fermentation conditions for aeration was investigated at $30^{\circ}C$, The viable cell count of lactic acid bacteria and yeast during fermentation were monitored by controlling aeration rate at each different aeration degree of 0v.v.m 0rpm, 0.25v.v.m 100rpm, 0.5v.v.m 200rpm, and 1v.v.m 500rpm respectively. The most active growth of the yeast was shown at 0.5v.v.m 200rpm as $4.5{\times}10^9CFU/m{\ell}$. By controlling aeration rate, the pH of the probiotics feed could be controlled between 4-5 for the enhancement of preservation characteristics and acceptability for cattle feeding.

  • PDF

Enhanced Production of Phaeodactylum tricornutum (Marine Diatoms) Cultured on a New Medium with Swine Wastewater Fermented by Soil Bacteria

  • Kim, Mi-Kyung;Chang, Moo-Ung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1947-1953
    • /
    • 2006
  • There have been a number of studies of methods for recycling animal wastewater to provide new bioresources. In the present work, a marine algal culture medium, designated KEP II, was prepared by adding swine waste (3% v/v) fermented by soil bacteria to a dilution of f/2 culture medium (CT). When Phaeodactylum tricornutum was grown in batch culture in KEP II, the cells lasted long at the exponential phase producing the specific growth rate and biomass; the production of total amino acids and secondary metabolites rose up to 5-fold. It also substantially enhanced the maximum quantum yield of photo system (PS) II of P. tricornutum, greatly increased the level of thylakoid membranes containing PS, and stimulated the production of pyrenoids, including enzymes for $CO_2$ fixation in chloroplasts. KEP II should improve the cost efficiency of industrial mass batch cultures and the value of microalgae for long-term preservation of fresh aquaculture feed as well as production of anticancer and antioxidant agents. Specifically, a low-cost medium for growing the diatoms of aquaculture feed will be economically advantageous.

Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers (팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향)

  • Baek, Youl-Chang;Jeong, Jin-Young;Oh, Young-Kyoon;Kim, Min-Seok;Lee, Sung-Dae;Lee, Hyun-Jeong;Do, Yoon-Jung;Ahmadi, Farhad;Choi, Hyuck
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.