A PSRI (position, scale, and rotation invariant ) feature extraction and automatic target recognition system using a cooperative network and an MLP is proposed. We can extract position invarient features by obtaining the target center using the projection and the moment in preprocessing stage. The scale and rotation invariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input to the cooperative network. By extracting the representative PSRI features form the features and their differentiations using max-net and min-net, we can rdduce the number of input neurons of the MLP, and make the resulted automatic target recognition system less sensitive to input variances. Experiments are conduted on various complex images which are shifted, rotated, or scaled, and the results show that the proposed system is very efficient for PSRI feature extractions and automatic target recognitions.
As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.
퍼지 형태학적 형상 분해를 이용한 얼굴인증 과정에서 퍼지척도를 기반으로 한 특징추출 방법을 제안하였다. 형태소에 관계하는 영상정보와 퍼지척도를 기반으로 한 가중치에 대하여 무게중심을 이용하여 인접정보가 고려되었다. 이에 의한 형태학적 침식과 팽창연산자를 정의하여 얼굴영역의 특징점 추출시 기존의 방법보다 4배 이상의 많은 분해영상을 얻을 수 있었다. 결국 특징 벡터를 이용하여 얼굴인증을 수행한 실험결과 기존의 형상분해에 의한 방법보다 특징점 추출과 임계값의 안정성을 확보하여 인식 결과에서 비교우위를 가질 수 있었다.
This paper presents a hybrid method for recognizing the faces by using zero mean and principal component analysis. Zero mean is applied to reduce the 1st order statistics to data nonlinearities. PCA is also used to derive an orthonormal basis which directly leads to dimensionality reduction, and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.
In this paper propose a Koaren character recognition system using a neural network is proposed. This system is a multilayer neural network based on the masking field model which consists of a input layer, four feature extraction layers which extracts type, direction, stroke, and connection features, and an output layer which gives us recognized character codes. First, 4x4 subpatterns of an NxN character pattern stored in the input buffer are applied into the feature extraction layers sequentially. Then, each of feature extraction layers extracts sequentially features such as type, direction, stroke, and connection, respectively. Type features for direction and connection are extracted by the type feature extraction layer, direction features for stroke by the direction feature extraction layer and stroke and connection features for stroke by the direction feature extraction layer and stroke and connection features for the recongnition of character by the stroke and the connection feature extractions layers, respectively. The stroke and connection features are saved in the sequential buffer layer sequentially and using these features the characters are recognized in the output layer. The recognition results of this system by tests with 8 single consonants and 6 single vowels are promising.
본 논문은 특징 정보 예측을 통한 빠른 보행자 검출 기법을 제안한다. 다양한 크기의 보행자를 검출하기 위해 보행자 모델의 크기나 입력영상의 크기를 변화시킨다. 보행자 모델의 크기를 변화시킬 경우 크기별 모델이 필요하며, 보행자 모델의 크기의 축소시키는 경우 모델 정보를 손상시킨다. 보행자 모델의 다양한 크기별 보행자의 특징을 추출해야 하므로 보행자 특징의 추출은 전체 수행시간 중 가장 많은 시간을 필요로 한다. 따라서 본 논문은 영상 크기에 따라 특징 추출을 반복하지 않고 입력영상에서 얻어진 특징 정보의 예측을 통해 보행자 검출의 특징추출을 수행한다. 제안하는 방법의 효율성을 검증하기 위해 다양한 채널을 가진 ChnFtrs 특징 및 Adaboost 알고리즘을 사용과 학습과 실험을 위한 영상으로 INRIA 보행자 DB를 사용하였다.
최근의 내용기반 영상 검객 시스템은 한정된 수의 영상을 저장해 놓은 단일의 서버를 이용하고 있다. 이로 인해 웹 상의 다양한 영상을 원하는 웹 사용자의 요구를 만족시키지 못하고 있다. 수많은 웹 영상을 대상으로 하는 내용기반 영상 검색 시스템은 무엇보다도 실시간에 기반을 두어야 한다. 이를 구현하기 위해서는 영상 수집과 특징 추출에 걸리는 많은 소모 시간 문제가 해결되어야 한다. 최근, 고속의 데이터 처리를 목적으로 부하분산 PC클러스터가 개발되고 있다. 본 논문에서는 많은 시간을 요하는 영상 수집과 특징 추출 작업을 부하분산 PC클러스터의 종속 컴퓨터들에 분배함으로써 전체 검색 시간을 감소시켰으며, 이를 통해 실시간 웹 영상 검색의 가능성을 발견할 수 있었다.
세계적으로 1500 종 이상이 분포하고 있는 해삼은 오랫동안 여러 나라에서 중요한 수산 자원으로 취급되어져 왔고 개체군 보존관리 보호종에 속하는 고부가가치 품종이다. 해삼에 관한 연구는 음식과 추출물의 효능에 관한 것이 대부분이며, 아직까지 해삼 특징 식별에 대한 연구는 이루어지지 않고 있다. 이에 본 연구는 고부가가치 품종인 해삼을 대량으로 포획하기 위하여 해삼의 특징점 추출을 위한 경계 검출 알고리즘을 제안하였으며 향후 해삼 인식 프로그램에 많은 도움이 되리라 생각한다.
본 논문에서는 구개열 환자의 장애 발음과 정상인의 발음을 자동으로 구분하여 판별하는데 사용될 수 있는 특징 추출 방법들의 성능을 분석하는 실험에 대하여 소개한다. 이 연구는 발성 장애인의 복지 향상을 추구하며 수행하고 있는 장애 음성 자동 인식 및 복원 소프트웨어 시스템 개발의 기초과정이다. 실험에 사용된 음성 데이터는 정상인의 발음, 구개열 환자의 발음, 그리고 모의 환자의 발음의 세 그룹으로부터 수집된 한국어 단음절로서 14개의 기본 자음과 5개의 복합 자음, 7개 모음이다. 발음의 특징 추출은 LPCC, MFCC, PLP의 세 가지 방법으로 각각 수행하였고, GMM 음향 모델로 인식 훈련을 한 후, 수집된 단음절 데이터를 대상으로 하여 인식 실험을 실시하였다. 실험 결과, 정상인과 구개열 환자의 장애 발음을 구별하기 위하여 특징을 추출함에 있어서 MFCC 방법이 전반적으로 가장 우수하였다. 본 연구의 결과는 구개열 환자의 부정확한 발음을 자동으로 인식하고 복원하는 연구와 구개열 장애 발음의 정도를 측정할 수 있는 도구에 대한 연구에 도움이 될 것으로 기대된다.
This paper presents a real-time verification system by extracting a features of multimodal biometrics using hybrid method, which is combined the moment balance and the independent component analysis(ICA). The moment balance is applied to reduce the computation loads by extracting the validity signal due to exclude the needless backgrounds of multimodal biometrics. ICA is also applied to increase the verification performance by removing the overlapping signals due to extract the statistically independent basis of signals. Multimodal biometrics are used both the faces and the fingerprints which are acquired by Web camera and acquisition device, respectively. The proposed system has been applied to the fusion problems of 48 faces and 48 fingerprints(24 persons * 2 scenes) of 320*240 pixels, respectively. The experimental results show that the proposed system has a superior verification performances(speed, rate).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.