References
- Crupi, V., Guglielmino, E. and Milazzo, G., 2004, Neural-network-based System for Novel Fault Detection in Rotating Machinery, Journal of Vibration and Control, Vol. 10, pp. 1137-1150. https://doi.org/10.1177/1077546304043543
- Li, F., Meng, G., Ye, L. and Chen, P., 2008, Wavelet Transform-based Higher-order Statistics for Fault Diagnosis in Rolling Element Bearings, Journal of Vibration and Control, Vol. 14, No. 11, pp. 1691-1709. https://doi.org/10.1177/1077546308091214
- Li, F., Meng, G., Ye, L. and Chen, P., 2005, Feature Extraction with Discrete Wavelet Transform for Drill Wear Monitoring, Journal of Vibration and Control, Vol. 11, No. 11, pp. 1375-1390. https://doi.org/10.1177/1077546305058262
- Goode, P. V. and Chow, M.-Y., 1995, Using a Neural/Fuzzy System to Extract Heuristic Knowledge of Incipient Faults in Induction Motors: Part I- Methodology, IEEE Transactions On Industrial Electronics, Vol. 42, No. 2, pp. 131-138. https://doi.org/10.1109/41.370378
- Chong, U.-P., Cho, S.-J. and Lee, J.-Y., 2006, Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm,Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 1, pp. 23-33.
- Sanz, J., Perera, R. and Huerta, C., 2007, Fault Diagnosis of Rotating Machinery Based on Auto-associative Neural Networks and Wavelet Transforms, Journal of Sound and Vibration, pp. 981-999.
- Lippmann, R. P., 1989, Pattern Classification Using Neural Network, IEEE Communication Magazine.
- Baillie, D. C. and Mathew, J., 1995, A Comparison of Autoregressive Modeling Techniques for Fault Diagnosis of Rolling Element Bearings, Mechanical Systems and Signal Processing, Vol. 10, No. 1, pp. 1-17.
- Thanagasundram, S. and Schlindwein, F. S., 2006, Autoregressive based Diagnostics Scheme for Detection of Bearing Faults, Proceedings of ISMA2006 Noise and Vibration Engineering Conference, pp. 3531-3546.
- Zhan, Y. M. and Jardine, A. K. S., 2005, Adaptive Autoregressive Modeling of Non-stationary Vibration Signals under Distinct Gear States. Part 1: Modeling, Journal of Sound and Vibration, Vol. 286, No. 3, pp. 429-450. https://doi.org/10.1016/j.jsv.2004.10.024
- Lee, S.-S., Cho, S.-J. and Chong, U.-P., 2005, Fault Diagnosis System of Rotating Machines Using LPC Residual Signal Energy, Journal of the Institute of Signal Processing and Systems, Vol, 6, No. 3, pp. 143-147.
- Nelwamondo, F. V., Marwala, T. and Mahola, U., 2006, Early Classifications of Bearing Faults using Hidden Markov Models, Gaussian Mixture Models, Mel-frequency Cepstral Coefficients and Fractals, International Journal of Innovative Computing, Information and Control, Vol. 2, No. 6, pp. 1281-1299.
- Tuan, D. V., 2009, Fault Detection and Diagnosis for Induction Motors using Local Feature, Variance, Cross-correlation and Wavelet, Ph.D Dissertation in University of Ulsan.
- Tuan, D. V., Cho, S.-J. and Chong, U.-P., 2009, Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelet, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19, No. 7, pp. 726-735. https://doi.org/10.5050/KSNVN.2009.19.7.726
- Yang, B.-S., Kim, K. J. and Han, T., 2004, Fault Diagnosis of Induction Motors Using Data Fusion of Vibration and Current Signal, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 14, No. 11, pp. 1091-1100. https://doi.org/10.5050/KSNVN.2004.14.11.1091
- Markel, J. D. and Gray Jr., A. H., 1976, Linear Prediction of Speech, Springer-Verlag, Berlin Heidelberg, New York.
- Soderstrom, T., 2007, Errors-in-variables Methods in System Identification, Automata, Vol. 43, No. 6, pp. 290-294. https://doi.org/10.1016/j.automatica.2006.08.023
- Diversi, R., Soverini, U. and Guidorzi, R., 2005, A New Estimation Approach for AR Models in Presence of Noise, in Proc. Preprints 16th IFAC World Congr., pp. 290-294.
- Bobillet, W., Diversi, R., Grivel, E., Guidorzi, R., Najim, M. and Soverini, U., 2007, Speech Enhancement Combining Optimal Smoothing and Errors-in-variables Identification of Noisy AR Processes, IEEE Transactions on Signal Processing, Vol. 55, No. 12, pp. 5564-5578. https://doi.org/10.1109/TSP.2007.898787