• Title/Summary/Keyword: Feature Extracting

Search Result 592, Processing Time 0.023 seconds

Image Watermarking Scheme Based on Scale-Invariant Feature Transform

  • Lyu, Wan-Li;Chang, Chin-Chen;Nguyen, Thai-Son;Lin, Chia-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3591-3606
    • /
    • 2014
  • In this paper, a robust watermarking scheme is proposed that uses the scale-invariant feature transform (SIFT) algorithm in the discrete wavelet transform (DWT) domain. First, the SIFT feature areas are extracted from the original image. Then, one level DWT is applied on the selected SIFT feature areas. The watermark is embedded by modifying the fractional portion of the horizontal or vertical, high-frequency DWT coefficients. In the watermark extracting phase, the embedded watermark can be directly extracted from the watermarked image without requiring the original cover image. The experimental results showed that the proposed scheme obtains the robustness to both signal processing and geometric attacks. Also, the proposed scheme is superior to some previous schemes in terms of watermark robustness and the visual quality of the watermarked image.

2D Design Feature Recognition using Expert System (전문가 시스템을 이용한 2차원 설계 특징형상의 인식)

  • 이한민;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Since a great number of 2D engineering drawings are being used in industry and at the same time 3D CAD becomes popular in recent years, we need to reconstruct 3D CAD models from 2D legacy drawings. In this thesis, a combination of a feature recognition method and an expert system is suggested for the 3D solid model reconstruction. Modeling primitives of 3D CAD systems are recognized and constructed by using the pattern matching technique of the features modeling. Additional information for the 3D model reconstruction can be generated by extracting symbols or text entities which are related to form entities. For complex and indefinite cases which cannot be solved by the process of feature recognition, an expert system with a rule base has been used for decision-making. A 3D reconstruction system which recognizes 2D DXF drawing files has been implemented where models composed with protrusions, holes, and cutouts can be handled.

  • PDF

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF

EXTRACTING INSIGHTS OF CLASSIFICATION FOR TURING PATTERN WITH FEATURE ENGINEERING

  • OH, SEOYOUNG;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.321-330
    • /
    • 2020
  • Data classification and clustering is one of the most common applications of the machine learning. In this paper, we aim to provide the insight of the classification for Turing pattern image, which has high nonlinearity, with feature engineering using the machine learning without a multi-layered algorithm. For a given image data X whose fixel values are defined in [-1, 1], X - X3 and ∇X would be more meaningful feature than X to represent the interface and bulk region for a complex pattern image data. Therefore, we use X - X3 and ∇X in the neural network and clustering algorithm to classification. The results validate the feasibility of the proposed approach.

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Feature Template-Based Sweeping Shape Reverse Engineering Algorithm using a 3D Point Cloud

  • Kang, Tae Wook;Kim, Ji Eun;Hong, Chang Hee;Hwa, Cho Gun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.680-681
    • /
    • 2015
  • This study develops an algorithm that automatically performs reverse engineering on three-dimensional (3D) sweeping shapes using a user's pre-defined feature templates and 3D point cloud data (PCD) of sweeping shapes. Existing methods extract 3D sweeping shapes by extracting points on a PCD cross section together with the center point in order to perform curve fitting and connect the center points. However, a drawback of existing methods is the difficulty of creating a 3D sweeping shape in which the user's preferred feature center points and parameters are applied. This study extracts shape features from cross-sectional points extracted automatically from the PCD and compared with pre-defined feature templates for similarities, thereby acquiring the most similar template cross-section. Fitting the most similar template cross-section to sweeping shape modeling makes the reverse engineering process automatic.

  • PDF

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.

A Study On The Improvement Of Vehicle Plate Recognition (차량 번호판 인식 효율 향상을 위한 연구)

  • Kong, Yong-Hae;Kwon, Chun-Ki;Kim, Myung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1947-1954
    • /
    • 2009
  • Camera-captured car plate images contain much variation and noise and the character images in a plate are typically very small. We attempted to improve the plate identification efficiency suitable for this undesirable condition. We experimented various image preprocessing and feature extracting methods and the very effective features that can compensate one feature's limitation is determined through extensive experiments. Finally two very effective features that can complement the limitations of each other feature(classifier) are determined and the efficiency is proved by recognition experiments. This approach is very necessary when handling plate character images which are typically small, various, and noisy. Individual classification result, confidence factor, region name relation and feedback verification are comprehensively considered to enhance the overall recognition efficiency. The efficiency of our method is verified by a recognition experiment using real car plate images taken from traffic roads.

Improved Feature Extraction Method for the Contents Polluter Detection in Social Networking Service (SNS에서 콘텐츠 오염자 탐지를 위한 개선된 특징 추출 방법)

  • Han, Jin Seop;Park, Byung Joon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.47-54
    • /
    • 2015
  • The number of users of SNS such as Twitter and Facebook increases due to the development of internet and the spread of supply of mobile devices such as smart phone. Moreover, there are also an increasing number of content pollution problems that pollute SNS by posting a product advertisement, defamatory comment and adult contents, and so on. This paper proposes an improved method of extracting the feature of content polluter for detecting a content polluter in SNS. In particular, this paper presents a method of extracting the feature of content polluter on the basis of incremental approach that considers only increment in data, not batch processing system of entire data in order to efficiently extract the feature value of new user data at the stage of predicting and classifying a content polluter. And it comparatively assesses whether the proposed method maintains classification accuracy and improves time efficiency in comparison with batch processing method through experiment.