• 제목/요약/키워드: Feature Discrimination

Search Result 172, Processing Time 0.025 seconds

F-ratio of Speaker Variability in Emotional Speech

  • Yi, So-Pae
    • 음성과학
    • /
    • 제15권1호
    • /
    • pp.63-72
    • /
    • 2008
  • Various acoustic features were extracted and analyzed to estimate the inter- and intra-speaker variability of emotional speech. Tokens of vowel /a/ from sentences spoken with different modes of emotion (sadness, neutral, happiness, fear and anger) were analyzed. All of the acoustic features (fundamental frequency, spectral slope, HNR, H1-A1 and formant frequency) indicated greater contribution to inter- than intra-speaker variability across all emotions. Each acoustic feature of speech signal showed a different degree of contribution to speaker discrimination in different emotional modes. Sadness and neutral indicated greater speaker discrimination than other emotional modes (happiness, fear, anger in descending order of F-ratio). In other words, the speaker specificity was better represented in sadness and neutral than in happiness, fear and anger with any of the acoustic features.

  • PDF

한국과 알제리 속담에 나타난 전통 여성관 비교 (Comparison of Traditional Perspective of Women in the Proverbs of Algery and Korea)

  • 김경랑
    • 비교문화연구
    • /
    • 제30권
    • /
    • pp.53-71
    • /
    • 2013
  • The aim of this study is to compare and analyze the similarities and differences in traditional perspective about women between Algery and Korea. Through this study, we found out following common denominators: sexual discrimination and denigration of women. Under the patriarchal system in Korea and Algery in the past, women were considered to be inferior to men and treated as men's possessions. The noteworthy feature is the perspective of mother. In both countries, the image of woman as a mother is regarded as the source of life and a central axis leading our society. It is very remarkable that we could find a lot of common ground despite that there are a lot of social, cultural and geometrical differences. Therefore, through this study, it is proved that the proverbs tell us the universality among people in the world regardless of culture and region.

원거리 무인기 신호 식별을 위한 특징추출 알고리즘 (Feature Extraction Algorithm for Distant Unmmaned Aerial Vehicle Detection)

  • 김주호;이기배;배진호;이종현
    • 전자공학회논문지
    • /
    • 제53권3호
    • /
    • pp.114-123
    • /
    • 2016
  • 본 논문에서는 무인항공기의 엔진 음향 신호를 탐지하기 위한 효과적인 특징 추출 방법을 제안하고 검증한다. 엔진 음향신호는 기본주파수와 배음이 정수배 관계를 갖는 조화 복합음(Harmonic complex tone)으로 구성되며, 각 주파수의 시간에 따른 변화는 연속적이다. 이러한 특성을 이용하여 기본주파수의 정수배와 실제 배음 주파수 차이의 평균과 분산, 주파수 변화량 등으로 구성된 특징벡터를 제안하였다. 모의 실험을 수행한 결과 제안한 특징벡터는 목표신호와 다양한 간섭 신호에 대해 우수한 변별력을 보였으며, 시간에 따라 주파수가 변하는 경우에도 영향을 받지 않고 안정적인 결과를 보였다. 원거리에서 실측된 엔진 음향신호로 부터 특징의 Fisher score를 계산하여 변별력을 비교한 결과, 제안한 특징 중 주파수에 기반한 세 가지 특징들이 신호 대 잡음비가 낮은 상황에서도 높은 변별력을 보였다. ELM 분류기를 이용해 MFCC와의 인식 성능을 비교한 결과, 제안한 방법을 이용할 경우 모의 간섭신호에 대한 오류율이 37.6% 개선되었다. 또한 신호대 잡음비가 시간에 따라 점진적으로 증가하는 경우 MFCC에 비해 4.5 dB 낮은 시점에서 목표신호 탐지가 가능하였다.

내용기반 검색을 위한 SOMk-NN탐색 알고리즘 (SOMk-NN Search Algorithm for Content-Based Retrieval)

  • 오군석;김판구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.358-366
    • /
    • 2002
  • 특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.

척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식 (Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image)

  • 홍재성;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.233-242
    • /
    • 1998
  • 본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.

  • PDF

2-D Conditional Moment for Recognition of Deformed Letters

  • Yoon, Myoong-Young
    • 한국산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.16-22
    • /
    • 2001
  • 본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 특징벡터를 추출하여 변형된 글자를 인식하는 새로운 방법을 제안하였다. 추출된 특징벡터는 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는 2차원 조건부 모멘트로 구성된다. 변형된 글자 인식을 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 과정으로 구성하였다. (i) 특징벡터는 하나의 이미지에 대하여 추정된 조건부 깁스분포를 바탕으로 2차원 조건부 모멘트를 계산하여 추출한다. (ii) 변형된 문자 인식은 제안된 판별거리함수를 계산하여 최소거리를 산출한 미지의 변형된 문자를 원형문자로 인식한다. 제안된 방법에 대한 성능평가를 위하여, 생성된 훈련 데이터를 만들어 Workstation에서 실험 한 결과 96%이상의 인식성능이 있음을 밝혔다.

  • PDF

An Improved 2-D Moment Algorithm for Pattern Classification

  • Yoon, myoung-Young
    • 한국산업정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 1999
  • 화상 데이터의 특성을 표현하는데 적합한 깁스분포를 바탕으로 특징벡터를 추출하여 패턴을 분류하는 새로운 알고리즘을 제안하였다. 특징벡터는 화상의 크기, 위치, 회전에 대해서 불변이며 접영에 대해서도 덜 민감한 특징을 갖는 2차원 모멘트들의 원소로 만들어진다. 알고리즘은 공간정보를 갖는 2차원 모멘트를 이용하여 특징벡터를 추출하는 과정과 거리함수를 이용하여 패턴을 분류하는 과정으로 구축하였다. 특징벡터는 깁스분포의 묘수를 추정하여 2차원 조건부 모멘트를 추출하여 구성한다. 패턴 분류 과정은 추출된 특징벡터로부터 제안된 판별거리함수를 계산하여 여러 원형 패턴 가운데 최소거리를 산출한 미지의 패턴을 원형패턴으로 분류한다. 제안된 방법의 성능을 검증하기 위하여 대문자와 소문자 52자로 구성된 훈련 데이터를 만들어 SUN ULTRA 10 워크스테이션에서 실험을 한 결과 98%이상의 분류성능이 있음을 밝혔다.

  • PDF

내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출 (Feature Extraction of Shape of Image Objects in Content-based Image Retrieval)

  • 조준서
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.823-828
    • /
    • 2003
  • 이 논문의 주요 목적은 내용을 기반으로 하는 이미지 검색에서 이미지 객체의 외형특징을 추출하는 방법을 제시하는 것이다. 대부분의 실질적인 객체들의 외형은 불규칙적이고, 이러한 객체를 수치화하기위한 일반적인 방법은 없다. 특히 전자 카타로그들은 상품들을 나타내는 많은 이미지를 포함하고 있다. 이 논문에서는 이미지 전체가 아닌 이미지내의 개별 객체들을 기반으로 특징을 추출하는 방법을 제시한다. 왜냐하면 제시된 방법은 한 이미지내에서 RLC lines을 사용하여 각 객체들의 외형을 기반으로하는 방법을 사용하기 때문이다. 실험결과는 일반적으로 가장 많이 사용하는 특징인 Texture와 비교를 했고 제시된 외형을 나타내는 변수들이 전자카타로그의 이미지 객체들을 뚜렷하게 나타냈고, 보다 정확하게 객체들을 분류하고 구별하였다.

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

Discrimination of Emotional States In Voice and Facial Expression

  • Kim, Sung-Ill;Yasunari Yoshitomi;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권2E호
    • /
    • pp.98-104
    • /
    • 2002
  • The present study describes a combination method to recognize the human affective states such as anger, happiness, sadness, or surprise. For this, we extracted emotional features from voice signals and facial expressions, and then trained them to recognize emotional states using hidden Markov model (HMM) and neural network (NN). For voices, we used prosodic parameters such as pitch signals, energy, and their derivatives, which were then trained by HMM for recognition. For facial expressions, on the other hands, we used feature parameters extracted from thermal and visible images, and these feature parameters were then trained by NN for recognition. The recognition rates for the combined parameters obtained from voice and facial expressions showed better performance than any of two isolated sets of parameters. The simulation results were also compared with human questionnaire results.